zoukankan      html  css  js  c++  java
  • 【POJ】1113 Wall(凸包)

    http://poj.org/problem?id=1113

    答案是凸包周长+半径为l的圆的周长...

    证明?这是个坑..

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <iostream>
    #include <algorithm>
    #include <queue>
    #include <set>
    #include <map>
    using namespace std;
    typedef long long ll;
    #define pii pair<int, int>
    #define mkpii make_pair<int, int>
    #define pdi pair<double, int>
    #define mkpdi make_pair<double, int>
    #define pli pair<ll, int>
    #define mkpli make_pair<ll, int>
    #define rep(i, n) for(int i=0; i<(n); ++i)
    #define for1(i,a,n) for(int i=(a);i<=(n);++i)
    #define for2(i,a,n) for(int i=(a);i<(n);++i)
    #define for3(i,a,n) for(int i=(a);i>=(n);--i)
    #define for4(i,a,n) for(int i=(a);i>(n);--i)
    #define CC(i,a) memset(i,a,sizeof(i))
    #define read(a) a=getint()
    #define print(a) printf("%d", a)
    #define dbg(x) cout << (#x) << " = " << (x) << endl
    #define error(x) (!(x)?puts("error"):0)
    #define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
    #define printarr1(a, b) for1(_, 1, b) cout << a[_] << '	'; cout << endl
    inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
    inline const int max(const int &a, const int &b) { return a>b?a:b; }
    inline const int min(const int &a, const int &b) { return a<b?a:b; }
    
    const int N=2005;
    struct Pt { int x, y; };
    int Cross(Pt &a, Pt &b, Pt &c) {
    	static int x1, x2, y1, y2;
    	x1=a.x-c.x; y1=a.y-c.y;
    	x2=b.x-c.x; y2=b.y-c.y;
    	return x1*y2-x2*y1;
    }
    int sqr(int x) { return x*x; }
    double dis(Pt &a, Pt &b) { return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y)); }
    bool cmp(const Pt &a, const Pt &b) { return a.x==b.x?a.y<b.y:a.x<b.x; }
    void tu(Pt *p, Pt *s, int n, int &cnt) {
    	sort(p, p+n, cmp);
    	cnt=-1;
    	rep(i, n) {
    		while(cnt>0 && Cross(p[i], s[cnt], s[cnt-1])>=0) --cnt;
    		s[++cnt]=p[i];
    	}
    	int k=cnt;
    	for3(i, n-2, 0) {
    		while(cnt>k && Cross(p[i], s[cnt], s[cnt-1])>=0) --cnt;
    		s[++cnt]=p[i];
    	}
    	if(n>1) --cnt;
    	++cnt;
    }
    
    int n, m, l;
    Pt a[N], b[N];
    int main() {
    	read(n); read(l);
    	rep(i, n) read(a[i].x), read(a[i].y);
    	tu(a, b, n, m);
    	b[m]=b[0];
    	double ans=2*l*acos(-1);
    	rep(i, m) ans+=dis(b[i], b[i+1]);
    	printf("%.0f
    ", ans);
    	return 0;
    }
    

      


    Description

    Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

    Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements. 

    The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

    Input

    The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle. 

    Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

    Output

    Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

    Sample Input

    9 100
    200 400
    300 400
    300 300
    400 300
    400 400
    500 400
    500 200
    350 200
    200 200

    Sample Output

    1628

    Hint

    结果四舍五入就可以了

    Source

  • 相关阅读:
    Building fresh packages卡很久
    后端阿里代码扫描
    npm 使用淘宝镜像
    git镜像
    mysql安装8.0.18
    idea2019.2.2版本破解
    JDK下载很慢
    解决GitHub下载速度慢下载失败的问题
    Hashtable多线程遍历问题
    2-18 求组合数 注:代码有问题找不出哪儿错了
  • 原文地址:https://www.cnblogs.com/iwtwiioi/p/4197819.html
Copyright © 2011-2022 走看看