zoukankan      html  css  js  c++  java
  • 【BZOJ】1038: [ZJOI2008]瞭望塔

    http://www.lydsy.com/JudgeOnline/problem.php?id=1038

    题意:给出n个x轴各不相同的二维整点,且升序,n<=300,坐标绝对值<=10^6,求这些点依次连接后折线的上面取一个点(x, y)使得:x0<=x<=xn,且这个点可以看得到所有线段的所有点。要求这些点到(垂直到)折线的y值之差最小。

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <iostream>
    #include <algorithm>
    #include <queue>
    #include <set>
    #include <map>
    #include <sstream>
    using namespace std;
    typedef long long ll;
    #define pb push_back
    #define rep(i, n) for(int i=0; i<(n); ++i)
    #define for1(i,a,n) for(int i=(a);i<=(n);++i)
    #define for2(i,a,n) for(int i=(a);i<(n);++i)
    #define for3(i,a,n) for(int i=(a);i>=(n);--i)
    #define for4(i,a,n) for(int i=(a);i>(n);--i)
    #define CC(i,a) memset(i,a,sizeof(i))
    #define read(a) a=getint()
    #define print(a) printf("%d", a)
    #define dbg(x) cout << (#x) << " = " << (x) << endl
    #define error(x) (!(x)?puts("error"):0)
    #define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)
    inline int getint() { static int r, k; r=0,k=1; static char c; c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
    
    const double eps=1e-6, oo=1e60;
    const int N=1005;
    int dcmp(double x) { return abs(x)<eps?0:(x<0?-1:1); }
    struct iP { double x, y; iP(double _x=0, double _y=0) : x(_x), y(_y) {} };
    typedef iP iV;
    iV operator-(iP a, iP b) { return iV(a.x-b.x, a.y-b.y); }
    iP operator+(iP a, iV b) { return iP(a.x+b.x, a.y+b.y); }
    iV operator*(iV a, double x) { return iV(a.x*x, a.y*x); }
    double cross(iV a, iV b) { return a.x*b.y-a.y*b.x; }
    double angle(iV &a) { return atan2(a.y, a.x); }
    
    struct iL {
    	iP p; iV v; double ang;
    	iL() {}
    	iL(iP a, iP b) { set(a, b); }
    	void set(iP a, iP b) { p=a; v=b-a; ang=angle(v); }
    	bool operator< (const iL &b) const { return ang<b.ang; }
    };
    iP LLi(iL &a, iL &b) {
    	static iV u;
    	static double t;
    	u=a.p-b.p;
    	t=cross(b.v, u)/cross(a.v, b.v);
    	return a.p+a.v*t;
    }
    bool OnLeft(iP &p, iL &l) { return dcmp(cross(l.v, p-l.p))>0; }
    bool half(iL *line, int ln, iP *s, int &cnt) {
    	static iL a[N], q[N];
    	static iP b[N];
    	memcpy(a, line, sizeof(iL)*(ln+1));
    	sort(a+1, a+1+ln);
    	int front=0, tail=0;
    	q[0]=a[1];
    	for1(i, 2, ln) {
    		while(front!=tail && !OnLeft(b[tail-1], a[i])) --tail;
    		while(front!=tail && !OnLeft(b[front], a[i])) ++front;
    		q[++tail]=a[i];
    		if(dcmp(cross(q[tail].v, q[tail-1].v))==0) {
    			--tail;
    			if(OnLeft(a[i].p, q[tail])) q[tail]=a[i];
    		}
    		if(front!=tail) b[tail-1]=LLi(q[tail-1], q[tail]);
    	}
    	while(front!=tail && !OnLeft(b[tail-1], q[front])) --tail;
    	if(tail-front<=1) return 0;
    	b[tail]=LLi(q[front], q[tail]);
    	cnt=0;
    	for1(i, front, tail) s[++cnt]=b[i];
    	return 1;
    }
    
    iL line[N];
    iP p[N], pp[N], a[N];
    int n, ln, num;
    void build() {
    	iP t1, t2;
    	for1(i, 1, n-1) line[i].set(a[i], a[i+1]);
    	ln=n-1;
    	++ln; line[ln].set(iP(oo, oo), iP(-oo, oo));
    	++ln; line[ln].set(iP(-oo, -oo), iP(oo, -oo));
    	++ln; line[ln].set(iP(-oo, oo), iP(-oo, -oo));
    	++ln; line[ln].set(iP(oo, -oo), iP(oo, oo));
    }
    double cal(iP &a, iP &b, double x) {
    	double k=(b.y-a.y)/(b.x-a.x), B=a.y-k*a.x;
    	return k*x+B;
    }
    int main() {
    	read(n);
    	for1(i, 1, n) a[i].x=getint();
    	for1(i, 1, n) a[i].y=getint();
    	build();
    	half(line, ln, pp, num);
    	double ans=oo;
    	double mnx=oo, mny=oo; int pos=1;
    	for1(i, 1, num) if(dcmp(mnx-pp[i].x)>0 || (dcmp(mnx-pp[i].x)==0 && dcmp(mny-pp[i].y)>0)) { mnx=pp[i].x; mny=pp[i].y; pos=i; }
    	for1(i, 1, num) p[i]=pp[pos], pos=pos%num+1;
    	int now=2;
    	for1(i, 1, n) {
    		while(now<num && dcmp(p[now].x-a[i].x)<0) ++now;
    		if(dcmp(a[i].x-p[now-1].x)>=0 && dcmp(p[now].x-a[i].x)>=0)
    			ans=min(ans, cal(p[now], p[now-1], a[i].x)-a[i].y);
    	}
    	now=2;
    	for1(i, 1, num) {
    		while(now<n && dcmp(a[now].x-p[i].x)<0) ++now;
    		if(dcmp(p[i].x-a[now-1].x)>=0 && dcmp(a[now].x-p[i].x)>=0)
    			ans=min(ans, p[i].y-cal(a[now], a[now-1], p[i].x));
    	}
    	printf("%.3f
    ", ans+eps);
    	return 0;
    }
    

      


    计算几何题一定要先想好再码!!!而且一定要注意精度问题!!!!因为答案0.00可能变成-0.00.....(一切都是精度的错..),因此我们在输出答案时别忘了加上eps........

    本题首先可以发现,可以取的点一定在每条有向线段(就是p[i]到p[i+1])所在直线的左边,所以答案点在这些直线的交中.

    即半平面交.....

    然后我sb了.............我竟然以为直接二分距离,然后在加一条y=maxh+h的直线然后判断是否存在半平面...........................................显然这样没有考虑到是垂直到达折线段.........................

    考虑到,这个半平面交其实是个凸的,而且,他们一定在所有线段的上方...............而每条线段和凸包上的线段都是直的,即线上的点有单调性......因此,最短距离一定在折线端点到另一个图的线段上...

    所以分类枚举凸包的点和原来的点判断到另一个凸线的距离即可.......................

    求半平面交的算法很简单...........先极角排序,然后用一个双端队列维护,且判断当前直线是否在队列中的直线的交点的左边,如果是则出列.............

    然后之前求直线交点喜闻乐见写错一个地方调了1h.............

    反正写这题用了3h左右吧......太弱了.............

  • 相关阅读:
    操作系统-微内核操作系统
    设备管理-虚设备与SPOOLING技术
    设备管理-数据传输控制方式
    文件管理-空闲存储空间的管理
    文件管理-索引文件结构
    Alpha冲刺8
    Alpha冲刺7
    Alpha冲刺6
    Alpha冲刺5
    Alpha冲刺4
  • 原文地址:https://www.cnblogs.com/iwtwiioi/p/4204796.html
Copyright © 2011-2022 走看看