zoukankan      html  css  js  c++  java
  • 【BZOJ】2741: 【FOTILE模拟赛】L

    题意:给定一个长度为n的序列,m次询问,每次询问一个区间[l, r],求max(Ai xor Ai+1 xor Ai+2 ... xor Aj),其中l<=i<=j<=r。(n<=12000, m<=6000, Ai在signed longint范围内)

    #include <bits/stdc++.h>
    using namespace std;
    
    const int nT=5000005, N=12005;
    struct node *null;
    struct node {
    	node *c[2];
    	int s;
    }pool[nT], *it=pool;
    node *newT() { node *x; x=it++; x->c[0]=x->c[1]=null; x->s=0; return x; }
    node *add(node *p, int y, int dep=30) {
    	node *x=newT();
    	if(dep==-1) return x;
    	*x=*p;
    	int f=(y>>dep)&1;
    	x->c[f]=add(p->c[f], y, dep-1); ++x->c[f]->s;
    	return x;
    }
    int query(node *a, node *b, int k, int dep=30) {
    	if(dep==-1) return 0;
    	int f=(k>>dep)&1, ff=f^1;
    	if(b->c[ff]->s>a->c[ff]->s) return (1<<dep)|query(a->c[ff], b->c[ff], k, dep-1);
    	return query(a->c[f], b->c[f], k, dep-1);
    }
    node *Root[N], **root=Root+1;
    int a[N], n, m, size, num, pos[N], d[120][N], last;
    
    void init() {
    	null=new node; null->c[0]=null->c[1]=null; null->s=0;
    	root[0]=null;
    	root[-1]=null;
    
    	scanf("%d%d", &n, &m); //++n;
    	for(int i=1; i<=n; ++i) scanf("%d", &a[i]), a[i]^=a[i-1];
    	for(int i=1; i<=n; ++i) root[i]=add(root[i-1], a[i]);
    	size=sqrt(n+0.5);
    	num=(n-1)/size+1;
    	for(int i=1; i<=n; ++i) pos[i]=(i-1)/size+1;
    	for(int i=1; i<=num; ++i) {
    		int pi=(i-1)*size+1;
    		for(int j=pi; j<=n; ++j) d[i][j]=max(d[i][j-1], query(root[pi-1], root[j], a[j]));
    	}
    }
    int getans(int l, int r) {
    	--l;
    	int bl=pos[l], ret=0;
    	if(pos[r]>bl) ret=d[bl+1][r];
    	for(int i=l, end=min(r, bl*size); i<=end; ++i) ret=max(ret, query(root[l-1], root[r], a[i]));
    	return ret;
    }
    void solve() {
    	int x, y, l, r;
    	while(m--) {
    		scanf("%d%d", &x, &y);
    		x=(((long long)last+x)%n)+1;
    		y=(((long long)last+y)%n)+1;
    		l=min(x, y); r=max(x, y); //printf("%d %d
    ", l, r);
    		printf("%d
    ", last=getans(l, r));
    	}
    }
    int main() {
    	init();
    	solve();
    	return 0;
    }
    

      

    (自己的傻×做法,线段树套可持久化trie,mle成翔)

    #include <bits/stdc++.h>
    using namespace std;
    
    typedef long long ll;
    const int M=8000005;
    struct node *null;
    struct node {
    	node *l, *r;
    	int cnt;
    }pool[M], *bin[M], *it=pool, *nod;
    int top;
    node *newnode() {
    	node *x;
    	if(!top) { if(pool+M==it) exit(0); x=it++; }
    	else x=bin[--top];
    	x->l=x->r=null; x->cnt=1;
    	return x;
    }
    void clean(node *&x) {
    	if(x!=null && x!=nod && !(--x->cnt)) { bin[top++]=x; clean(x->l); clean(x->r); }
    	x=null;
    }
    node *merge(node *a, node *b) {
    	if(a==null) { ++b->cnt; return b; }
    	if(b==null) { ++a->cnt; return a; }
    	node *x=newnode();
    	x->l=merge(a->l, b->l);
    	x->r=merge(a->r, b->r);
    	return x;
    }
    node *add(node *p, ll y, int dep) {
    	if(dep==-1) return nod;
    	node *x=newnode();
    	x->l=p->l;
    	x->r=p->r;
    	if((y>>dep)&1) ++x->l->cnt, x->r=add(p->r, y, dep-1);
    	else ++x->r->cnt, x->l=add(p->l, y, dep-1);
    	return x;
    }
    node *add(node *p, ll y) { node *x=add(p, y, 63); clean(p); return x; }
    node *build(node *a, node *b) {
    	if(a==null || b==null) return null;
    	node *x=newnode();
    	if(b->l!=null) {
    		x->l=build(a->l, b->l);
    		x->r=build(a->r, b->l);
    	}
    	if(b->r!=null) {
    		node *t;
    		x->l=merge(t=x->l, build(a->r, b->r)); clean(t);
    		x->r=merge(t=x->r, build(a->l, b->r)); clean(t);
    	}
    	return x;
    }
    void P(node *x, ll now, int dep=63) {
    	if(x==null) return;
    	if(dep==-1) printf("now:%lld
    ", now);
    	P(x->l, now, dep-1);
    	P(x->r, now|(1<<dep), dep-1);
    }
    void D(node *x) {
    	P(x, 0); puts("");
    }
    
    struct T {
    	node *l, *r, *all;
    	ll sum;
    	void pushup(T &lc, T &rc) {
    		sum=lc.sum^rc.sum;
    		static node *t;
    		l=merge(lc.l, build(rc.l, add(null, lc.sum)));
    		r=merge(rc.r, build(lc.r, add(null, rc.sum)));
    		all=merge(lc.all, rc.all); // printf("top:%d
    ", top);
    		all=merge(t=all, build(lc.r, rc.l)); clean(t); // printf("sum:%lld , have:
    ", sum); D(all);
    	}
    	ll get(node *x, int dep, bool flag) {
    		if(dep==-1) return 0;
    		ll ret=0;
    		if(x->l!=null && x->r!=null)
    			if(flag) ret=get(x->l, dep-1, 0);
    			else ret=(1ll<<dep), ret|=get(x->r, dep-1, 0);
    		else if(x->l==null && x->r!=null)
    			ret=(1ll<<dep), ret|=get(x->r, dep-1, 0);
    		else if(x->r==null && x->l!=null)
    			ret=get(x->l, dep-1, 0);
    		else puts("error");
    		return ret;
    	}
    	ll get() { return get(all, 63, 1); }
    	void clr() { clean(l); clean(r); clean(all); }
    	T& operator=(const T &a) { l=a.l; r=a.r; all=a.r; sum=a.sum; ++l->cnt; ++r->cnt; ++all->cnt; return *this; }
    }t[12005<<2];
    
    int n, q;
    ll a[12005];
    void build(int l, int r, int x) {
    	if(l==r) {
    		t[x].l=t[x].r=t[x].all=add(null, a[l]); // printf("%lld
    ", a[l]); D(t[x].all);
    		t[x].sum=a[l];
    		return;
    	}
    	int mid=(l+r)>>1, lc=x<<1, rc=lc|1;
    	build(l, mid, lc);
    	build(mid+1, r, rc);
    	t[x].pushup(t[lc], t[rc]);
    }
    void query(int l, int r, int x, int L, int R, T &ret) {
    	if(L<=l && r<=R) { ret=t[x]; return; }
    	int mid=(l+r)>>1;
    	if(R<=mid) { query(l, mid, x<<1, L, R, ret); return; }
    	else if(mid<L) { query(mid+1, r, x<<1|1, L, R, ret); return; }
    	T lc, rc;
    	query(l, mid, x<<1, L, R, lc);
    	query(mid+1, r, x<<1|1, L, R, rc);
    	ret.pushup(lc, rc); lc.clr(); rc.clr();
    }
    void init() {
    	null=new node; null->l=null->r=null; null->cnt=1;
    	nod=newnode();
    }
    int main() {
    	scanf("%d%d", &n, &q);
    	init();
    	for(int i=1; i<=n; ++i) scanf("%lld", &a[i]);
    	build(1, n, 1);
    	int last=0, x, y, l, r;
    	T t;
    	while(q--) {
    		scanf("%d%d", &x, &y);
    		x=((x+last)%n)+1;
    		y=((y+last)%n)+1;
    		l=min(x, y);
    		r=max(x, y); // printf("l:%d, r:%d
    ", l, r);
    		query(1, n, 1, l, r, t);
    		printf("%d
    ", last=t.get());
    		t.clr();
    	}
    	return 0;
    }
    

      

    题解:

    我看到大家的tag是可持久化trie后..我就往这个方向思考了下...就yy出了第一种sb做法.......................

    即:发现我们只需要维护二进制位...然后查询就是在对应区间一直向右走即可(特判符号位...),用线段树维护区间........可持久化合并trie.......可是你会发现.........有O(nlogn)次合并..每次合并O(size(trie)).................然后可能又tle又mle。反正我开了引用计数的垃圾回收也跪了...............玛雅,rewrite的节奏啊...3k啊.............然后查题解..................发现是分块= =....什么鬼................

    吐槽:最近到底怎么了.....................越是放假就越颓废??我感觉一放假,什么事情都会发生= =...这几天天天家里来客人妈呀...........能不能愉快的做题了........而且由于脑袋不知怎么得..转的特别慢...脑洞到是还好..可是一些简单的东西我要想好久啊啊>_<。。。还有本题竟然没有负数.....而且在int范围内............

    ydc狂D蒟蒻我TAT....我已经被D成狗了.........ydc(先发了我这篇还没写完的博文....又发了一个自己讲莫队分块的博文的链接...下边是有我20天前的脑残留言的):“我怎么感到是在羞辱我”...............................(妈呀...还是在半群里...

    真正的题解:

    首先转化问题(妈呀完全没想到啊...),由于xor操作有特殊的性质,即$a otimes b otimes b = a$所以我们要求一段区间[a,b]的xor和,可以由[0, b]和[0, a-1]的xor值得来,设$s[i]=a[1] otimes a[2] otimes cdots otimes a[i]$,那么[l, r]区间的xor和就是 $s[r] otimes s[l-1]$

    果然我是脑残吗...

    然后考虑区间最大的....即我们要求区间$[l, r]$最大的xor值,就是要求

    $$max{ s[j-1] otimes s[i], l<=j<=i<=r }$$

    转化一下,其实就是要求$[l-1, r]$这个区间取两个数$i, j$求最大的$s[j] otimes s[i]$(可以直接忽略i=j的情况,对结果无影响...)

    容易得到dp方程,设d[i, j]表示区间$[i, j]$取两个数最大的xor值

    $$d[i,j]=max{d[i,j-1], f(s[j], {s[l-1 cdots r] } ) }, f表示将s[j]放到那个集合中找到一个最大的xor和}$$

    而这个方程外层都已经是$O(n^2)$的...

    先考虑决策....容易想到这是个类似trie的东西....然后自己就能yy出来可持久化trie了...trie的边就代表一个二进制位..然后从上往下走即可....请自行yy...(....可持久化用在两个地方...1、省内存...2、区间信息...

    然后就是分块大法!

    引用ydc:“一般莫队能做的,分块+可持久化线段树/可持久化块状链表都是能做的”,orz

    我们分块处理上边的方程..先分成$sqrt n$块..然后方程$d[i,j]$表示第$i$块的起点到第$j$个元素的最大异或值...方程转移一样...这样预处理就是$O(31*n^{1.5})$了...(31是位数别说你看不懂..即log(2^31)

    然后对于连续的我们直接得到答案,最后在处理一下非连续的即可...

    总复杂度

    $O(31*n^{1.5})$预处理,$O(31*mn^{0.5})$查询...可以水过..

  • 相关阅读:
    session绑定javaBean
    Some code changes cannot be hot swapped into a running virtual machine,
    抓包及WireShark工具介绍
    Jquery选择器特殊字符问题
    win7,win8 64位 VS2010/VS2013调试报错
    win7x64 连接oracle 客户端 VS2010调试 提示ORA-12154 TNS
    WebService本地VS运行正常,发布到IIS异常
    SQL语句增、删、改
    vb 去掉html中的回车和tab;转换部分html大写标签为小写
    C#语句——循环语句(for循环与for循环嵌套)
  • 原文地址:https://www.cnblogs.com/iwtwiioi/p/4265371.html
Copyright © 2011-2022 走看看