zoukankan      html  css  js  c++  java
  • 【BZOJ】3437: 小P的牧场

    题意

    n个点,需要再一些点建立控制站,如果在第(i)个建站,贡献为(a[i])。假设前一个站为(j<i),则([j+1, i])的点的贡献是(sum_{k=j+1}^{i} (i-k) b[k])。同时要求第(n)个点建站。求最小贡献。((n le 10^6)

    题解

    (d(i))表示前(i)个且在第(i)个牧场建控制站的最小贡献

    [d(i) = min( d(j) + cost(j+1, i) ) + a[i] ]

    (ans = d(n))
    (cost(i, j))表示([i, j])(j)控制的费用

    $$ egin{align} cost(i, j) & = sum_{k=i}^{j} (j-k)b[k] \ & = j sum_{k=i}^{j} b[k] - sum_{k=i}^{j} kb[k] \ end{align} $$


    (s_0(n) = sum_{i=1}^{n} b[i])
    (s_1(n) = sum_{i=1}^{n} ib[i])

    [cost(i, j) = j (s_0(j) - s_0(i-1)) - (s_1(j) - s_1(i-1)) ]

    $$ egin{align} d(i) & = min( d(j) + i(s_0(i) - s_0(j)) - s_1(i) + s_1(j) ) \ & = min( d(j) + s_1(j) - is_0(j) ) + is_0(i) - s_1(i) + a[i] \ end{align} $$

    设决策(j)(k)优且(s_0(j) le s_0(k))

    $$ egin{align} d(j) + s_1(j) - i s_0(j) & le d(k) + s_1(k) - i s_0(k) \ d(j) + s_1(j) - ( d(k) + s_1(k) ) & le i (s_0(j) - s_0(k)) \ frac{d(j) + s_1(j) - ( d(k) + s_1(k) )}{ s_0(j) - s_0(k)} & ge i \ end{align} $$

    由于(i)递增,(s_0(i))(i)递增而递增,因此我们用单调队列优化

    #include <bits/stdc++.h>
    using namespace std;
    const int N=1000005;
    typedef long long ll;
    int a[N], q[N];
    ll s0[N], s1[N], d[N];
    inline ll Y(int j, int k) {
    	return d[j]+s1[j]-d[k]-s1[k];
    }
    inline ll X(int j, int k) {
    	return (ll)s0[j]-s0[k];
    }
    int main() {
    	int n;
    	scanf("%d", &n);
    	for(int i=1; i<=n; ++i) {
    		scanf("%d", &a[i]);
    	}
    	for(int i=1; i<=n; ++i) {
    		scanf("%lld", &s0[i]);
    		s1[i]=s0[i]*i;
    		s0[i]+=s0[i-1];
    		s1[i]+=s1[i-1];
    	}
    	int fr=0, ta=1;
    	q[0]=0;
    	for(int i=1; i<=n; ++i) {
    		while(ta-fr>=2 && Y(q[fr], q[fr+1])>(ll)i*X(q[fr], q[fr+1])) {
    			++fr;
    		}
    		int j=q[fr];
    		d[i]=d[j]+s1[j]-s0[j]*i+s0[i]*i-s1[i]+a[i];
    		while(ta-fr>=2 && Y(q[ta-2], i)*X(q[ta-2], q[ta-1])<=Y(q[ta-2], q[ta-1])*X(q[ta-2], i)) {
    			--ta;
    		}
    		q[ta++]=i;
    	}
    	printf("%lld
    ", d[n]);
    	return 0;
    }
  • 相关阅读:
    数据要求说明书
    详细设计说明书
    《机器学习》西瓜书 课后习题参考答案
    机器学习基础 基本术语
    (转)android UI进阶之仿iphone的tab效果
    (转)android UI进阶之弹窗的使用
    (转) Android UI学习 Tab的学习和使用
    (转) android UI进阶之布局的优化(二)
    名言警句
    php的IP转换成整型函数ip2long()出现负数
  • 原文地址:https://www.cnblogs.com/iwtwiioi/p/4985820.html
Copyright © 2011-2022 走看看