zoukankan      html  css  js  c++  java
  • 【玩转TensorFlow】TensorFlow常见问题详解

    引言:自TensorFlow于2015年底正式开源,距今已有一年多,不久前,TensorFlow正式版也发布了。这期间TensorFlow不断给人以惊喜,推出了分布式版本,服务框架TensorFlowServing,可视化工具TensorFlow,上层封装TF.Learn,其他语言(Go、Java、Rust、Haskell)的绑定、Windows的支持、JIT编译器XLA、动态计算图框架Fold,以及数不胜数的经典模型在TensorFlow上的实现(InceptionNet、SyntaxNet等)。在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准。

      目前看来,对于人工智能这个领域依然有不少怀疑的声音,但不可否认的是,人工智能仍然是未来的发展趋势。

      本文整理了黄文坚和唐源两位老师在开源中国高手问答中一些与TensorFlow相关的精彩问答,主要分为以下几类。

    • TensorFlow之入门篇
    • TensorFlow之性能篇
    • TensorFlow之适用场景
    • TensorFlow之实战篇
    • 其他相关的问题

    一、TensorFlow之入门篇

    1.没接触过,刚了解了一下,这个东西就是把某种东西用数据描述出来,然后用一些样本告诉机器它是什么,或者要对他进行什么操作,训练后,机器就能告诉我们输入的数据是什么,或者自动的进行操作吗?比如输入一堆图片告诉他哪个是猫,以后它就能自动识别猫了;给汽车装上各种传感器采集数据,人开着车操作,一段时间后,它就知道什么情况要怎么操作了,就会自动驾驶了?不知理解得对不对,希望指正。

      对的,你说的是其中一类运用,属于机器学习的概念,但可以做到的还远远不止这些,可以多多关注这个领域。深度学习是机器学习的一个分支。TensorFlow是主要用来进行深度学习应用的框架。

    2.我是TensorFlow爱好者,现在正在学习,国内的这方面的资料不多,感谢你们提供的资料。我想问一下,学习TensorFlow有什么学习曲线,有没有什么实战的案例?另外在集群模式支持的是不是友好,和Spark集成是不是友好?或者有没有这方面的规划。

      书中有特别多的实战例子,欢迎购买!至于对Spark集群的友好,你可以了解一下雅虎最近新开源的TensorFlowOnSpark。

    3.看了这个题目的一些提问,发现这个TensorFlow技术,学习曲线还是很陡峭,研究的人还是少数,有什么方法可以把学习曲线降低,更容易入门吗?还有学习这个技术,有什么必要的学科基础要求吗?

      可以先通过keras上手,这是一个支持TensorFlow的上层封装。在学习TensorFlow之前,需要有基础的Python编程能力,以及对深度学习有一定了解。不过我现在在和RStudio合作把这个也能放在R里面跑,可以关注一下我的GitHub:terrytangyuan (Yuan (Terry) Tang)

    4.好期待TensorFlow这本书,对于新手看着书入门会有难度吗?要先掌握什么基础知识呢?

      可以先看看TensorFlow中文官方站点的文档。本书对新手难度不高。需要一些基础的Python运用能力,还有一些机器学习基础。书中对深度学习有较多的讲解,所以对深度学习的知识要求不高。

    5.作为一名成长在Spring技术栈下的码农,转投TensorFlow的话,这本书适合我们入门么?也想请您在机器学习方向上提供一些指导意见,谢谢。

      完全可以的,可以学习一下基础的Python语法,学习机器学习,深度学习,尝试做一做相关的小应用,也可以看看雅虎最近出的TensorFlowOnSpark,或从sklearn+numpy+pandas开始。

    6.请问如果要学习TensorFlow,数学应该掌握到什么程度,高数,线代,积分都学过还需要再学哪些内容?

      如果只是要掌握这门工具,不需要学习太多理论的东西,比如说你如果想利用这门工具来做一些机器学习的运用,我现在做的tf.contrib.learn模块,类似scikit-learn,降低了很多学习的门槛,希望能够帮助到大家。如果想深入做研究的话,你说的这些都是必须要掌握的基础,可以在这基础上多关注一下相关的研究,建立好自己的感兴趣方向。

    7.学习TensorFlow需要哪些技术栈,了解TensorFlow需要阅读源码吗?

      如果只是想调用高阶的一些模块做一些应用,基本的Python就够了,如果想在某一块做提升的话,能自己学习读代码是再好不过的了,我一开始参与开源软件的时候也是只懂一些基础,可以积极参与开发和讨论,从这个过程中可以学到很多。如果想掌握底层的一些细节,就需要学好C语言之类的了。

      最底层还有cuda的代码。这个要看自己的需求,是想了解到什么程度,如果只是用来做应用,想要很快出结果,直接看api就好。如果想对性能进行优化,可能需要阅读源码。

    8.与TensorFlow类似的项目有哪些?TensorFlow的优点和缺点是?

      还有Caffe、CNTK、MXNet等,在《TensorFlow实战》书中第二章详尽地讲解了TensorFlow与其他学习框架的对比。也可以看这篇文章,摘自书中第2章《TensorFlow和Caffe、CNTK、MXNet等其他7种深度学习框架的对比》

    9.TensorFlow只能部署在Linux机器上?

      Mac,Windows,Mobile,RasberryPi都是可以的

    二、TensorFlow之性能篇

    1.TensoFlow的优点我知道,架构好、跨平台、接口丰富、易部署,而且是大公司的产品。问题就是TensoFlow的性能到底如何,我看过网上几个评测,是不是像以前别人测试中的那样慢的离谱,不管CPU还是GPU跟Torch比都慢不少,(评比原文),更有测试评论说TensoFlow比convnetjs慢100倍(原文地址)。

      我简单了解深度学习的算法有很多,效率也不同,我希望知道的是,在同算法的情况下,TensoFlow到底比其它框架慢多少?毕竟性能也是一个很关键的因素。

      这些评测是很旧的了,新版的TensorFlow没有这个问题。TensorFlow目前可能在全连接的MLP上稍微慢一点,但是后续XLA会解决这个问题。但是其他比如CNN、RNN等,因为大家主要都使用cuDNN,差异不大,性能基本上非常接近的。性能你可以放心,Google内部全部使用这个框架,如果真有性能慢的话,这么多人使用着早就解决了。

    2.机器学习中一般分有监督学习和无监督学习,无监督学习下,用TensorFlow来对某个数据集进行学习,那么它识别出来的特征是什么?还有TensorFlow1.0中加入了XLA,我理解为能把代码翻译成特定的GPU或x86-64的运行代码,是不是只有在做代数运算时才会用上XLA?TensorFlow不是已经在底层用cuda的cuDNN库加速了吗,为什么还要用XLA?

      关于无监督学习,书中有讲解。无监督学习在深度学习中一般是自编码器等,提取到的是抽象的高阶特征,去除了噪声。XLA会对几个层叠的操作进行JIT编译。cuda是一门语言,cuDNN是深度学习的库,使用cuda加速也要看是怎么使用它加速,是一层计算执行一次,还是把几层的计算合并在一起执行,XLA做的就是这个,将一些简单的操作编译合并成一个操作。此前TensorFlow训练MLP等网络较慢,使用XLA后有。

    3.请问使用TensorFlowOnSpark之后,除了免去数据在HDFS和TensorFlow移动之外,是否能对性能有较好的提升呢?如果不用TensorFlowOnSpark,TensorFlow目前自己的分布式性能是否已经成熟了呢?

      目前TensorFlow的分布式算是比较成熟的,但可能还不是最快的。TensorFlowonSpark应该不能提升分布式的性能,毕竟还经过了一层Spark的通信机制处理。

      应该选择TensorFlow还是Theano?有使用两个库的用户比较一下这两者。比如从编译速度,运行速度,易用性等角度进行比较。

      可以参考这篇文章:也就是我们这本《TensorFlow实战》里面的其中一节:《TensorFlow和Caffe、CNTK、MXNet等其他7种深度学习框架的对比》

    三、TensorFlow之适用场景

    1.请问TensorFlow在自然语言处理上有没有优势?

      自然语言主要使用RNN、LSTM、GRU等,目前新推出的TensorFLowFold支持DynamicsBatching,计算效率大幅度提升,非常适合做自然语言处理。

    2.TensorFlow在实际生产环境中,有什么特别适合的场景呢?

      TensorFlow部署非常方便,可用在Android、iOS等客户端,进行图像识别、人脸识别等任务。常见的CTR预估,推荐等任务,也可以轻松地部署到服务器CPU上。

    3.TensorFlow有在生产企业中应用的案例吗?

      在Google用的特别多,所有会用到深度学习的场景,都可以使用TensorFlow,比如搜索、邮件、语音助手、机器翻译、图片标注等等。

    4.TensorFlow在大数据行业的应用和运用怎么样?TensorFlow的源码使用了哪些设计模式?

      应用非常广的,谷歌已经在很多项目上用了TensorFlow,比如说Youtubewatchnext,还有很多研究型的项目,谷歌DeepMind以后所有的研究都会使用这个框架。如果对某段代码好奇,可以去参考参考源代码学习学习,很多的设计都是经过内部各种项目和用户的千锤百炼。

      Google内部非常多team在使用TensorFlow,比如搜索、邮件、语音、机器翻译等等。数据越大,深度学习效果越好,而支持分布式的TensorFlow就能发挥越大的作用。

    5.最近在学习TensorFlow,发现其分布式有in-graph和between-gragh两种架构模式,请问这两种架构的区别是什么?或者是不是应用场景不同?

      其实一个in-graph就是模型并行,将模型中不同节点分布式地运行;between-graph就是数据并行,同时训练多个batch的数据。要针对神经网络结构来设计,模型并行实现难度较大,而且需要网络中天然存在很多可以并行的节点。因此一般用数据并行的比较多。

    6.TensorFlow实现估值网络,作用和意义在哪里?有没有其他的方法实现估值网络?

      估值网络是深度强化学习中的一个模型,可以用来解决常见的强化学习问题,比如下棋,自动玩游戏,机器控制等等。

    7.想请问下TF有类似SparkStreaming的模块吗?TF在后端存储上和cassandra或者hdfs的集成上有没有啥需要注意的地方?Spark在集群上依赖Master,然后分发到Worker上,这样的架构感觉不太稳定,不知道TF在分布式是什么架构有没有什么特点?

      目前没有类似Streaming的东西,Spark主要用来做数据处理。TensorFlow则更多是对处理后的数据进行训练和学习。

    8.TensorFlow对初学者是否太难了?TensorFlow貌似都是研发要用的,对服务器运维会有哪些改变?

      TensorFlow针对实际生产也是非常好的。应该是所有框架中最适合实际生产环境的,因为有Google强大的工程团队的支持,所以TensorFlow拥有产品级的代码,稳健的质量,还有适合部署的TensorFlowServing。

    9.TensorFlow从个体学习研究到实际生产环境应用,有哪些注意事项?

      个人研究的时候没有太多限制,实际上线生成可以使用TensorFlowServing,部署效率比较高。

    10.TF的耗能是否可以使其独立工作在离线环境的嵌入式小板上,真正达到可独立的智能机器人。

      可以的,使用TensorFlow的嵌入式设备很多。但做机器人涉及到很多步骤,核心部分都设计了机器学习,图像处理之类的,TensorFlow可以用来搭建那些。

    11.互联网应用如何结合TensorFlow,能简单介绍一下吗?

      互联网应用很多都是推荐系统,比如说Youtubewatchnext的推荐系统就是用到了TensorFlow,现在在tf.contrib.learn里面有专门的Estimator来做WideandDeepLearning(可以查看官网上的例子,我们的书中也有更深一些的讲解),大家也都可以用的。

    12.不知道有没有针对传统零售行业的实际案例,比如销售预测的案例。

      用深度学习可以做销售预测模型,只要它可以转为一个分类预测的问题。

    13.使用TensorFlow的产品有哪些?有比较有代表性的吗?

      可以看看我之前的评论,Youtubewatchnext就是其中一个例子,还有很火的AlphaGo。

          阅读全文:http://click.aliyun.com/m/14340/  

  • 相关阅读:
    算法竞赛入门经典习题2-3 韩信点兵
    ios入门之c语言篇——基本函数——5——素数判断
    ios入门之c语言篇——基本函数——4——数值交换函数
    144. Binary Tree Preorder Traversal
    143. Reorder List
    142. Linked List Cycle II
    139. Word Break
    138. Copy List with Random Pointer
    137. Single Number II
    135. Candy
  • 原文地址:https://www.cnblogs.com/iyulang/p/6586866.html
Copyright © 2011-2022 走看看