、Flume NG简述
Flume NG是一个分布式,高可用,可靠的系统,它能将不同的海量数据收集,移动并存储到一个数据存储系统中。轻量,配置简单,适用于各种日志收集,并支持 Failover和负载均衡。并且它拥有非常丰富的组件。Flume NG采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,三者组建了一个Agent。三者的职责如下所示:
•Source:用来消费(收集)数据源到Channel组件中
•Channel:中转临时存储,保存所有Source组件信息
•Sink:从Channel中读取,读取成功后会删除Channel中的信息
下图是Flume NG的架构图,如下所示:
图中描述了,从外部系统(Web Server)中收集产生的日志,然后通过Flume的Agent的Source组件将数据发送到临时存储Channel组件,最后传递给Sink组件,Sink组件直接把数据存储到HDFS文件系统中。
2、单点Flume NG搭建、运行
我们在熟悉了Flume NG的架构后,我们先搭建一个单点Flume收集信息到HDFS集群中,由于资源有限,本次直接在之前的高可用Hadoop集群上搭建Flume。
场景如下:在NNA节点上搭建一个Flume NG,将本地日志收集到HDFS集群。
3、软件下载
在搭建Flume NG之前,我们需要准备必要的软件,具体下载地址 http://archive.apache.org/dist/flume/1.8.0/
http://mirror.bit.edu.cn/apache/flume/1.8.0/apache-flume-1.8.0-bin.tar.gz
4、安装与配置
安装解压flume安装包,命令如下所示:
tar -zxvf apache-flume-1.8.0-bin.tar.gz
配置环境变量
vi /etc/profile
export JAVA_HOME=/usr/java/jdk1.8.0_92/ export PATH=$JAVA_HOME/bin:$PATH export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar #set flume export FLUME_HOME=/data/apps/apache-flume-1.8.0-bin export PATH=$PATH:$FLUME_HOME/bin
source /etc/profile
cd /data/apps/apache-flume-1.8.0-bin/conf
修改 flume-env.sh配置如下:
export JAVA_HOME=/usr/java/jdk1.8.0_92/
flumr单节点配置文件设置如下:
flume-hdfs.conf
#agent1 name agent1.sources=source1 agent1.sinks=sink1 agent1.channels=channel1 #Spooling Directory #set source1 agent1.sources.source1.type=spooldir agent1.sources.source1.spoolDir=/home/hadoop/flumetest/dir/logdfs agent1.sources.source1.channels=channel1 agent1.sources.source1.fileHeader = false agent1.sources.source1.interceptors = i1 agent1.sources.source1.interceptors.i1.type = timestamp #set sink1 agent1.sinks.sink1.type=hdfs agent1.sinks.sink1.hdfs.path=hdfs://hadoopmaster:8020/flume/logdfs agent1.sinks.sink1.hdfs.fileType=DataStream agent1.sinks.sink1.hdfs.writeFormat=TEXT agent1.sinks.sink1.hdfs.rollInterval=1 agent1.sinks.sink1.channel=channel1 agent1.sinks.sink1.hdfs.filePrefix=%Y-%m-%d agent1.sinks.sink1.hdfs.fileSuffix=.txt #set channel1 agent1.channels.channel1.type=file agent1.channels.channel1.checkpointDir=/home/hadoop/flumetest/dir/logdfstmp/point agent1.channels.channel1.dataDirs=/home/hadoop/flumetest/dir/logdfstmp
5、单节点flume启动
启动命令如下:
flume-ng agent --conf conf --conf-file /home/hadoop/cloud/programs/flume/conf/flume-hdfs.conf --name agent1 -Dflume.root.logger=INFO,console > /home/hadoop/cloud/programs/flume/logs/flume-hdfs.log 2>&1 &
注:命令中的agent1表示配置文件中的Agent的Name,如配置文件中的agent1。flume-hdfs.conf表示配置文件所在配置,需填写准确的配置文件路径。
6、单节点flume效果预览
在/home/hadoop/flumetest/dir/logdfs下编辑文件test.txt并任意写入内容,保存后,文件会立即上传hdfs,并被标记完成。
运行效果如下:
页面可查看已上传并重命名的文件:
7、高可用Flume NG搭建
在完成单点的Flume NG搭建后,下面我们搭建一个高可用的Flume NG集群,架构图如下所示:
图中,我们可以看出,Flume的存储可以支持多种,这里只列举了HDFS和Kafka(如:存储最新的一周日志,并给Storm系统提供实时日志流)。
7.1、Flume的Agent和Collector分布如下表所示:
3台机器构建集群。Flume的Agent和Collector分布如下表所示:
图中所示,Agent1,Agent2,Agent3数据分别流入到Collector1和Collector2,Flume NG本身提供了Failover机制,可以自动切换和恢复。在上图中,有3个产生日志服务器分布在不同的机房,要把所有的日志都收集到一个集群中存储。下 面我们开发配置Flume NG集群
7.2、flume集群配置
配置Agent1,Agent2,Agent3,分别位于192.168.50.100-102三台机器,配置相同,如下所示:
flume-client.properties
#agent1 name agent1.channels = c1 agent1.sources = r1 agent1.sinks = k1 k2 #set gruop agent1.sinkgroups = g1 #set channel agent1.channels.c1.type = memory agent1.channels.c1.capacity = 1000 agent1.channels.c1.transactionCapacity = 100 agent1.sources.r1.channels = c1 agent1.sources.r1.type = exec agent1.sources.r1.command = tail -F /home/hadoop/flumetest/dir/logdfs/flumetest.log agent1.sources.r1.interceptors = i1 i2 agent1.sources.r1.interceptors.i1.type = static agent1.sources.r1.interceptors.i1.key = Type agent1.sources.r1.interceptors.i1.value = LOGIN agent1.sources.r1.interceptors.i2.type = timestamp # set sink1 agent1.sinks.k1.channel = c1 agent1.sinks.k1.type = avro agent1.sinks.k1.hostname = hadoopmaster agent1.sinks.k1.port = 52020 # set sink2 agent1.sinks.k2.channel = c1 agent1.sinks.k2.type = avro agent1.sinks.k2.hostname = hadoopslave1 agent1.sinks.k2.port = 52020 #set sink group agent1.sinkgroups.g1.sinks = k1 k2 #set failover agent1.sinkgroups.g1.processor.type = failover agent1.sinkgroups.g1.processor.priority.k1 = 10 agent1.sinkgroups.g1.processor.priority.k2 = 1 agent1.sinkgroups.g1.processor.maxpenalty = 10000
配置Collector1和Collector2,分别位于192.168.50.100-101两台台机器,绑定的IP(或主机名)不同,需要修改为各自所在机器的IP(或主机名)
192.168.50.100(hadoopmaster)的flume-server.properties配置如下:
#set Agent name a1.sources = r1 a1.channels = c1 a1.sinks = k1 #set channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # other node,nna to nns a1.sources.r1.type = avro a1.sources.r1.bind = hadoopmaster a1.sources.r1.port = 52020 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = static a1.sources.r1.interceptors.i1.key = Collector a1.sources.r1.interceptors.i1.value = hadoopmaster a1.sources.r1.channels = c1 #set sink to hdfs a1.sinks.k1.type=hdfs a1.sinks.k1.hdfs.path=hdfs://hadoopmaster:8020/flume/logdfs a1.sinks.k1.hdfs.fileType=DataStream a1.sinks.k1.hdfs.writeFormat=TEXT a1.sinks.k1.hdfs.rollInterval=1 a1.sinks.k1.channel=c1 a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d a1.sinks.k1.hdfs.fileSuffix=.txt
192.168.50.101(hadoopslave1)的flume-server.properties配置如下:
#set Agent name a1.sources = r1 a1.channels = c1 a1.sinks = k1 #set channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # other node,nna to nns a1.sources.r1.type = avro a1.sources.r1.bind = hadoopslave1 a1.sources.r1.port = 52020 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = static a1.sources.r1.interceptors.i1.key = Collector a1.sources.r1.interceptors.i1.value = hadoopslave1 a1.sources.r1.channels = c1 #set sink to hdfs a1.sinks.k1.type=hdfs a1.sinks.k1.hdfs.path=hdfs://hadoopmaster:8020/flume/logdfs a1.sinks.k1.hdfs.fileType=DataStream a1.sinks.k1.hdfs.writeFormat=TEXT a1.sinks.k1.hdfs.rollInterval=1 a1.sinks.k1.channel=c1 a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d a1.sinks.k1.hdfs.fileSuffix=.txt
7.3、flume集群启动
在Collector各节点上启动命令如下所示:
flume-ng agent --conf conf --conf-file /home/hadoop/cloud/programs/flume/conf/flume-server.properties --name a1 -Dflume.root.logger=INFO,console > /home/hadoop/cloud/programs/flume/logs/flume-server.log 2>&1 &
注:命令中的a1表示配置文件中的Agent的Name,如配置文件中的a1。flume-server.properties表示配置文件所在配置,需填写准确的配置文件路径。
在Agent各节点上启动命令如下所示:
flume-ng agent --conf conf --conf-file /home/hadoop/cloud/programs/flume/conf/flume-client.properties --name agent1 -Dflume.root.logger=INFO,console > /home/hadoop/cloud/programs/flume/logs/flume-client.log 2>&1 &
注:命令中的agent1表示配置文件中的Agent的Name,如配置文件中的agent1。flume-client.properties表示配置文件所在配置,需填写准确的配置文件路径。
7.4、Flume NG集群的高可用(故障转移)测试
场景如下:我们在Agent1节点上传文件,由于我们配置Collector1的权重比Collector2大,所以 Collector1优先采集并上传到存储系统。然后我们kill掉Collector1,此时有Collector2负责日志的采集上传工作,之后,我 们手动恢复Collector1节点的Flume服务,再次在Agent1上次文件,发现Collector1恢复优先级别的采集工作。具体截图如下所 示:
Collector1优先上传:
HDFS集群中上传的log内容预览:
Collector1宕机,Collector2获取优先上传权限:
HDFS文件系统中的截图预览:
上传的文件内容预览:
8、总结
在配置高可用的Flume NG时,需要注意一些事项。在Agent中需要绑定对应的Collector1和Collector2的IP和Port,另外,在配置Collector 节点时,需要修改当前Flume节点的配置文件,Bind的IP(或HostName)为当前节点的IP(或HostName),最后,在启动的时候,指定配置文件中的Agent的Name和配置文件的路径,否则会出错。