zoukankan      html  css  js  c++  java
  • MapReduce的计数器

     第一部分.Hadoop计数器简述

    hadoop计数器:

          可以让开发人员以全局的视角来审查程序的运行情况以及各项指标,及时做出错误诊断并进行相应处理。 内置计数器(MapReduce相关、文件系统相关和作业调度相关),

    也可以通过http://master:50030/jobdetails.jsp查看

    MapReduce的输出:

        

        运行jar包的详细步骤:

    [root@neusoft-master filecontent]# hadoop jar Traffic.jar /data/HTTP_20130313143750.dat /out2
    17/02/01 19:58:17 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    17/02/01 19:58:18 INFO client.RMProxy: Connecting to ResourceManager at neusoft-master/192.168.191.130:8080
    17/02/01 19:58:18 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
    17/02/01 19:58:19 INFO input.FileInputFormat: Total input paths to process : 1
    17/02/01 19:58:19 INFO mapreduce.JobSubmitter: number of splits:1
    17/02/01 19:58:19 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1485556908836_0009
    17/02/01 19:58:19 INFO impl.YarnClientImpl: Submitted application application_1485556908836_0009
    17/02/01 19:58:19 INFO mapreduce.Job: The url to track the job: http://neusoft-master:8088/proxy/application_1485556908836_0009/
    17/02/01 19:58:19 INFO mapreduce.Job: Running job: job_1485556908836_0009
    17/02/01 19:58:26 INFO mapreduce.Job: Job job_1485556908836_0009 running in uber mode : false
    17/02/01 19:58:26 INFO mapreduce.Job: map 0% reduce 0%
    17/02/01 19:58:32 INFO mapreduce.Job: map 100% reduce 0%
    17/02/01 19:58:38 INFO mapreduce.Job: map 100% reduce 100%
    17/02/01 19:58:38 INFO mapreduce.Job: Job job_1485556908836_0009 completed successfully
    17/02/01 19:58:38 INFO mapreduce.Job: Counters: 49
    File System Counters  1.文件系统计数器,由两类组成,FILE类是文件系统与Linux(磁盘)交互的类,HDFS是文件系统与HDFS交互的类(本质上都是与磁盘数据打交道)
    FILE: Number of bytes read=1015
    FILE: Number of bytes written=220657
    FILE: Number of read operations=0
    FILE: Number of large read operations=0
    FILE: Number of write operations=0
    HDFS: Number of bytes read=2334
    HDFS: Number of bytes written=556
    HDFS: Number of read operations=6
    HDFS: Number of large read operations=0
    HDFS: Number of write operations=2
    Job Counters   2.作业计数器  3.框架本身的计数器
    Launched map tasks=1   加载map任务
    Launched reduce tasks=1  加载reduce任务
    Data-local map tasks=1   数据本地化
    Total time spent by all maps in occupied slots (ms)=3115   所有map任务在被占用的slots中所用的时间------在yarn中,程序打成jar包提交给resourcemanager,nodemanager向resourcemanager申请资源,然后在nodemanager上运行, 而划分资源(cpu,io,网络,磁盘)的单位叫容器container,每个节点上资源不是无限的,因此应该将任务划分为不同的容器,job在运行的时候可以申请job的数量,之后由nodemanager确定哪些任务可以执行map,那些可以执行reduce等,从而由slot表示,表示槽的概念。任务过来就占用一个槽。

    Total time spent by all reduces in occupied slots (ms)=3095  所有reduce任务在被占用的slots中所用的时间
    Total time spent by all map tasks (ms)=3115  所有map执行时间
    Total time spent by all reduce tasks (ms)=3095   所有reduce执行的时间
    Total vcore-seconds taken by all map tasks=3115  
    Total vcore-seconds taken by all reduce tasks=3095
    Total megabyte-seconds taken by all map tasks=3189760
    Total megabyte-seconds taken by all reduce tasks=3169280
    Map-Reduce Framework
    Map input records=22  //输入的行数 或键值对数目
    Map output records=22  // 输出的键值对
    Map output bytes=965
    Map output materialized bytes=1015
    Input split bytes=120
    Combine input records=0   规约  第五步
    Combine output records=0
    Reduce input groups=21   输入的是21个组
    Reduce shuffle bytes=1015
    Reduce input records=22   输入的行数或键值对数目
    Reduce output records=21
    Spilled Records=44
    Shuffled Maps =1
    Failed Shuffles=0
    Merged Map outputs=1
    GC time elapsed (ms)=73
    CPU time spent (ms)=1800
    Physical memory (bytes) snapshot=457379840
    Virtual memory (bytes) snapshot=3120148480
    Total committed heap usage (bytes)=322437120
    Shuffle Errors       4.shuffle错误
    BAD_ID=0
    CONNECTION=0
    IO_ERROR=0
    WRONG_LENGTH=0
    WRONG_MAP=0
    WRONG_REDUCE=0
    File Input Format Counters    5.输入计数器
    Bytes Read=2214
    File Output Format Counters   6.输出的计数器
    Bytes Written=556

    运行结果截图:

                   

    通过查看http://neusoft-master:8088/可得到详细的job信息

       上述页面是resourcemanager的集群,上面显示了所有的application应用用户层面看是job作业,resourcemanager层面看是applicaton应用

     第二部分 自定义计数器

    核心代码:

     

    //计数器使用~解决:判断下输入文件中有多少hello
    Counter counterHello = context.getCounter("Sensitive words","hello");
    //假设hello为敏感词
                if(line != null && line.contains("hello")){
                    counterHello.increment(1L);
                }
    //计数器代码结束

     

        示例代码:

      1 package Mapreduce;
      2 
      3 import java.io.IOException;
      4 
      5 import org.apache.hadoop.conf.Configuration;
      6 import org.apache.hadoop.fs.Path;
      7 import org.apache.hadoop.io.LongWritable;
      8 import org.apache.hadoop.io.Text;
      9 import org.apache.hadoop.mapreduce.Counter;
     10 import org.apache.hadoop.mapreduce.Job;
     11 import org.apache.hadoop.mapreduce.Mapper;
     12 import org.apache.hadoop.mapreduce.Reducer;
     13 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
     14 import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
     15 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
     16 import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
     17 
     18 /**
     19  *
     20  * 计数器的使用及测试
     21  */
     22 public class MyCounterTest {
     23     public static void main(String[] args) throws Exception {
     24         //必须要传递的是自定的mapper和reducer的类,输入输出的路径必须指定,输出的类型<k3,v3>必须指定
     25         //2将自定义的MyMapper和MyReducer组装在一起
     26         Configuration conf=new Configuration();
     27         String jobName=MyCounterTest.class.getSimpleName();
     28         //1首先寫job,知道需要conf和jobname在去創建即可
     29         Job job = Job.getInstance(conf, jobName);
     30         
     31         //*13最后,如果要打包运行改程序,则需要调用如下行
     32         job.setJarByClass(MyCounterTest.class);
     33         
     34         //3读取HDFS內容:FileInputFormat在mapreduce.lib包下
     35         FileInputFormat.setInputPaths(job, new Path("hdfs://neusoft-master:9000/data/hellodemo"));
     36         //4指定解析<k1,v1>的类(谁来解析键值对)
     37         //*指定解析的类可以省略不写,因为设置解析类默认的就是TextInputFormat.class
     38         job.setInputFormatClass(TextInputFormat.class);
     39         //5指定自定义mapper类
     40         job.setMapperClass(MyMapper.class);
     41         //6指定map输出的key2的类型和value2的类型  <k2,v2>
     42         //*下面两步可以省略,当<k3,v3>和<k2,v2>类型一致的时候,<k2,v2>类型可以不指定
     43         job.setMapOutputKeyClass(Text.class);
     44         job.setMapOutputValueClass(LongWritable.class);
     45         //7分区(默认1个),排序,分组,规约 采用 默认
     46         
     47         //接下来采用reduce步骤
     48         //8指定自定义的reduce类
     49         job.setReducerClass(MyReducer.class);
     50         //9指定输出的<k3,v3>类型
     51         job.setOutputKeyClass(Text.class);
     52         job.setOutputValueClass(LongWritable.class);
     53         //10指定输出<K3,V3>的类
     54         //*下面这一步可以省
     55         job.setOutputFormatClass(TextOutputFormat.class);
     56         //11指定输出路径
     57         FileOutputFormat.setOutputPath(job, new Path("hdfs://neusoft-master:9000/out3"));
     58         
     59         //12写的mapreduce程序要交给resource manager运行
     60         job.waitForCompletion(true);
     61     }
     62     private static class MyMapper extends Mapper<LongWritable, Text, Text,LongWritable>{
     63         Text k2 = new Text();
     64         LongWritable v2 = new LongWritable();
     65         @Override
     66         protected void map(LongWritable key, Text value,//三个参数
     67                 Mapper<LongWritable, Text, Text, LongWritable>.Context context) 
     68                 throws IOException, InterruptedException {
     69             String line = value.toString();
     70             //计数器使用~解决:判断下输入文件中有多少hello  这里仅仅是举例,如果有很多的hello可能显示的还是如此结果
     71             Counter counterHello = context.getCounter("Sensitive words","hello");//假设hello为敏感词
     72             if(line != null && line.contains("hello")){
     73                 counterHello.increment(1L);
     74             }
     75             //计数器代码结束
     76             String[] splited = line.split("	");//因为split方法属于string字符的方法,首先应该转化为string类型在使用
     77             for (String word : splited) {
     78                 //word表示每一行中每个单词
     79                 //对K2和V2赋值
     80                 k2.set(word);
     81                 v2.set(1L);
     82                 context.write(k2, v2);
     83             }
     84         }
     85     }
     86     private static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
     87         LongWritable v3 = new LongWritable();
     88         @Override //k2表示单词,v2s表示不同单词出现的次数,需要对v2s进行迭代
     89         protected void reduce(Text k2, Iterable<LongWritable> v2s,  //三个参数
     90                 Reducer<Text, LongWritable, Text, LongWritable>.Context context)
     91                 throws IOException, InterruptedException {
     92             long sum =0;
     93             for (LongWritable v2 : v2s) {
     94                 //LongWritable本身是hadoop类型,sum是java类型
     95                 //首先将LongWritable转化为字符串,利用get方法
     96                 sum+=v2.get();
     97             }
     98             v3.set(sum);
     99             //将k2,v3写出去
    100             context.write(k2, v3);
    101         }
    102     }
    103 }

        运行:

       

       

      从上图中可以看到Sensitive words里面显示了hello的个数。

        第三部分  总结:

    问:partition的目的是什么?
    答:多个reducer task实现并行计算,节省运行实际,提高job执行效率。

    问:什么时候使用自定义排序?
    答:.....
    问:如何使用自定义排序?
    答:自定义个k2类型,覆盖compareTo(...)方法

    问:什么时候使用自定义分组?
    答:当k2的compareTo方法不适合业务的时候。
    问:如何使用自定义分组?
    答:job.setGroupingComparatorClass(...);

    问:使用combiner有什么好处?
    答:在map端执行reduce操作,可以减少map最终的数据量,减少传输到reducer的数据量,减轻网络压力。
    问:为什么combiner不是默认配置?
    答:因为有个算法不适合使用combiner。什么样的算法不适合?不符合幂等性。
    问:为什么在map端执行了reduce操作,还需要在reduce端再次执行哪?
    答:因为map端执行的是局部reduce操作,在reduce端执行全局reduce操作。

     

     

     

     

  • 相关阅读:
    POJ 2502 Subway(最短路径)
    HDU 1430 魔板
    HDU 1043 POJ 1077 八数码问题
    POJ 2576 Tug of War 随机算法(非正规解法)
    什么是COM
    6.0的版本的 tc,不支持大漠对象做数组吗?
    Q键连发。按住Q键则连发。松开则停止1。
    Q键连发。按住Q键 则连发。松开则停止2。
    特殊符号。
    僵尸_另类的生命体。
  • 原文地址:https://www.cnblogs.com/jackchen-Net/p/6408756.html
Copyright © 2011-2022 走看看