zoukankan      html  css  js  c++  java
  • 2.0CNN

    介绍

    https://www.youtube.com/watch?v=jajksuQW4mc

    https://www.youtube.com/watch?v=2-Ol7ZB0MmU

    https://www.youtube.com/watch?v=H3ciJF2eCJI

    卷积神经网络---图片识别,视频分析、语音识别

    参考谷歌youtube上提供的CNN视频演示

    数据组织形式

    计算机识别的不是颜色本身,而是由颜色组成的矩阵

      如果是黑色的话,矩阵的维度为2维

      如果是彩色的话,矩阵的维度是3维度,还有一个RGB通道来表示颜色

    卷积神经网络结构

     卷积的图示理解

    用一个XYK的长方体矩阵去依次经过原始数据的每一块,这就是简单的卷积操作,也是一种对矩阵的操作

    另:stride 表示一次跨几步

    不断压缩长和宽,而增加厚度

    跨度太长的话会丢掉一些信息

    所以将跨度设置的小一些,通过pooling变成和上述跨度一样大的形状

    一种maxpooling  一种averagepooling

    如何设计卷积神经网络?

    给一张图片image

    全连接层就类比于普通神经网络的隐层或隐藏层

     CNN代码实战MNIST手写体识别数据集

    python2和3均可执行

    """
    Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
    """
    from __future__ import print_function
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    # number 1 to 10 data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
    
    def compute_accuracy(v_xs, v_ys):
        global prediction
        y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})
        correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})
        return result
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def conv2d(x, W):
        # stride [1, x_movement, y_movement, 1]
        # Must have strides[0] = strides[3] = 1
        return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
    def max_pool_2x2(x):
        # stride [1, x_movement, y_movement, 1]
        return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    
    # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 784])/255.   # 28x28
    ys = tf.placeholder(tf.float32, [None, 10])
    keep_prob = tf.placeholder(tf.float32)
    x_image = tf.reshape(xs, [-1, 28, 28, 1])
    # print(x_image.shape)  # [n_samples, 28,28,1]
    
    ## conv1 layer ##
    W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
    h_pool1 = max_pool_2x2(h_conv1)                         # output size 14x14x32
    
    ## conv2 layer ##
    W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
    h_pool2 = max_pool_2x2(h_conv2)                          # output size 7x7x64
    
    ## fc1 layer ##
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
    ## fc2 layer ##
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
    
    
    
    # the error between prediction and real data
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),
                                                  reduction_indices=[1]))       # loss
    train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    sess = tf.Session()
    # important step
    # tf.initialize_all_variables() no long valid from
    # 2017-03-02 if using tensorflow >= 0.12
    if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
        init = tf.initialize_all_variables()
    else:
        init = tf.global_variables_initializer()
    sess.run(init)
    
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})
        if i % 50 == 0:
            print(compute_accuracy(mnist.test.images, mnist.test.labels))

    结果显示:经过100步已经可以达到75%了,效果也很明显

  • 相关阅读:
    重拾IP路由选择:CCNA学习指南中的IP路由选择
    Ubuntu Eclipse ns3编译中 遇到的OSError 系列问题
    Ubuntu 上 执行命令 java -version 显示 没有那个文件或目录
    Ubuntu 登陆界面无限循环问题 以及 root用户无法使用命令问题
    【TCP/IP详解 卷一:协议】TCP的小结
    Ubuntu上 配置Eclipse:安装CDT
    【TCP/IP详解 卷一:协议】第二十四章 TCP的未来与性能
    【TCP/IP详解 卷一:协议】TCP定时器 小结
    【TCP/IP详解 卷一:协议】第二十三章 TCP的保活定时器
    【TCP/IP详解 卷一:协议】第二十二章 TCP的坚持定时器
  • 原文地址:https://www.cnblogs.com/jackchen-Net/p/8119626.html
Copyright © 2011-2022 走看看