zoukankan      html  css  js  c++  java
  • 2.2RNN

    RNN

    RNN无法回忆起长久的记忆

    LSTM

    (long short Term memory长短期记忆)解决梯度消失或弥散vanishing 和梯度爆炸explosion  0.9*n-->0   1.1*n--->无穷大

    在RNN中增加了Gate

    案例

     

     所以RNN无法回忆起长久的记忆。LSTM为了解决该问题多了三个控制器,做到了延缓记忆的功能

     可以从主线和分线两个方面理解。LSTM可以解决延缓记忆问题

     

     截断的反向传播BBPT

    https://r2rt.com/styles-of-truncated-backpropagation.html

    Tensorflow的截断反向传播(截断长度为n的子序列)的方法在定性上不同于“反向传播错误最多n步”。

    LSTM模拟sin图像解决回归问题代码

    """
    Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
    Run this script on tensorflow r0.10. Errors appear when using lower versions.
    """
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    
    BATCH_START = 0
    TIME_STEPS = 20
    BATCH_SIZE = 50
    INPUT_SIZE = 1
    OUTPUT_SIZE = 1
    CELL_SIZE = 10
    LR = 0.006
    
    
    def get_batch():
        global BATCH_START, TIME_STEPS
        # xs shape (50batch, 20steps)
        xs = np.arange(BATCH_START, BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE, TIME_STEPS)) / (10*np.pi)
        seq = np.sin(xs)
        res = np.cos(xs)
        BATCH_START += TIME_STEPS
        # plt.plot(xs[0, :], res[0, :], 'r', xs[0, :], seq[0, :], 'b--')
        # plt.show()
        # returned seq, res and xs: shape (batch, step, input)
        return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs]
    
    
    class LSTMRNN(object):
        def __init__(self, n_steps, input_size, output_size, cell_size, batch_size):
            self.n_steps = n_steps
            self.input_size = input_size
            self.output_size = output_size
            self.cell_size = cell_size
            self.batch_size = batch_size
            with tf.name_scope('inputs'):
                self.xs = tf.placeholder(tf.float32, [None, n_steps, input_size], name='xs')
                self.ys = tf.placeholder(tf.float32, [None, n_steps, output_size], name='ys')
            with tf.variable_scope('in_hidden'):
                self.add_input_layer()
            with tf.variable_scope('LSTM_cell'):
                self.add_cell()
            with tf.variable_scope('out_hidden'):
                self.add_output_layer()
            with tf.name_scope('cost'):
                self.compute_cost()
            with tf.name_scope('train'):
                self.train_op = tf.train.AdamOptimizer(LR).minimize(self.cost)
    
        def add_input_layer(self,):
            l_in_x = tf.reshape(self.xs, [-1, self.input_size], name='2_2D')  # (batch*n_step, in_size)
            # Ws (in_size, cell_size)
            Ws_in = self._weight_variable([self.input_size, self.cell_size])
            # bs (cell_size, )
            bs_in = self._bias_variable([self.cell_size,])
            # l_in_y = (batch * n_steps, cell_size)
            with tf.name_scope('Wx_plus_b'):
                l_in_y = tf.matmul(l_in_x, Ws_in) + bs_in
            # reshape l_in_y ==> (batch, n_steps, cell_size)
            self.l_in_y = tf.reshape(l_in_y, [-1, self.n_steps, self.cell_size], name='2_3D')
    
        def add_cell(self):
            lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.cell_size, forget_bias=1.0, state_is_tuple=True)
            with tf.name_scope('initial_state'):
                self.cell_init_state = lstm_cell.zero_state(self.batch_size, dtype=tf.float32)
            self.cell_outputs, self.cell_final_state = tf.nn.dynamic_rnn(
                lstm_cell, self.l_in_y, initial_state=self.cell_init_state, time_major=False)
    
        def add_output_layer(self):
            # shape = (batch * steps, cell_size)
            l_out_x = tf.reshape(self.cell_outputs, [-1, self.cell_size], name='2_2D')
            Ws_out = self._weight_variable([self.cell_size, self.output_size])
            bs_out = self._bias_variable([self.output_size, ])
            # shape = (batch * steps, output_size)
            with tf.name_scope('Wx_plus_b'):
                self.pred = tf.matmul(l_out_x, Ws_out) + bs_out
    
        def compute_cost(self):
            losses = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
                [tf.reshape(self.pred, [-1], name='reshape_pred')],
                [tf.reshape(self.ys, [-1], name='reshape_target')],
                [tf.ones([self.batch_size * self.n_steps], dtype=tf.float32)],
                average_across_timesteps=True,
                softmax_loss_function=self.ms_error,
                name='losses'
            )
            with tf.name_scope('average_cost'):
                self.cost = tf.div(
                    tf.reduce_sum(losses, name='losses_sum'),
                    self.batch_size,
                    name='average_cost')
                tf.summary.scalar('cost', self.cost)
    
        @staticmethod
        def ms_error(labels, logits):
            return tf.square(tf.subtract(labels, logits))
    
        def _weight_variable(self, shape, name='weights'):
            initializer = tf.random_normal_initializer(mean=0., stddev=1.,)
            return tf.get_variable(shape=shape, initializer=initializer, name=name)
    
        def _bias_variable(self, shape, name='biases'):
            initializer = tf.constant_initializer(0.1)
            return tf.get_variable(name=name, shape=shape, initializer=initializer)
    
    
    if __name__ == '__main__':
        model = LSTMRNN(TIME_STEPS, INPUT_SIZE, OUTPUT_SIZE, CELL_SIZE, BATCH_SIZE)
        sess = tf.Session()
        merged = tf.summary.merge_all()
        writer = tf.summary.FileWriter("logs", sess.graph)
        # tf.initialize_all_variables() no long valid from
        # 2017-03-02 if using tensorflow >= 0.12
        if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
            init = tf.initialize_all_variables()
        else:
            init = tf.global_variables_initializer()
        sess.run(init)
        # relocate to the local dir and run this line to view it on Chrome (http://0.0.0.0:6006/):
        # $ tensorboard --logdir='logs'
    
        plt.ion()
        plt.show()
        for i in range(200):
            seq, res, xs = get_batch()
            if i == 0:
                feed_dict = {
                        model.xs: seq,
                        model.ys: res,
                        # create initial state
                }
            else:
                feed_dict = {
                    model.xs: seq,
                    model.ys: res,
                    model.cell_init_state: state    # use last state as the initial state for this run
                }
    
            _, cost, state, pred = sess.run(
                [model.train_op, model.cost, model.cell_final_state, model.pred],
                feed_dict=feed_dict)
    
            # plotting 绘制训练sin图像的过程
            plt.plot(xs[0, :], res[0].flatten(), 'r', xs[0, :], pred.flatten()[:TIME_STEPS], 'b--')
            plt.ylim((-1.2, 1.2))
            plt.draw()
            plt.pause(0.3) #每隔3秒运行一次
    
            if i % 20 == 0:
                print('cost: ', round(cost, 4))
                result = sess.run(merged, feed_dict)
                writer.add_summary(result, i)

    程序运行结果

    下面的图像是拟合正弦曲线的过程

  • 相关阅读:
    大数据全栈式开发语言 – Python
    史上最全的“大数据”学习资源(上)(山东数漫江湖)
    Hadoop大数据生态系统及常用组件(山东数漫江湖)
    Vue前端开发规范(山东数漫江湖)
    BTA 常问的 Java基础40道常见面试题及详细答案(山东数漫江湖))
    Spring 框架的设计理念与设计模式分析(山东数漫江湖)
    SSM三大框架整合详细总结(Spring+SpringMVC+MyBatis)(山东数漫江湖)
    深入理解Spring MVC(山东数漫江湖)
    Oracle中varchar,varchar2,nvarchar,nvarchar2的区别及其它数据类型描述
    再见,霍金
  • 原文地址:https://www.cnblogs.com/jackchen-Net/p/8125621.html
Copyright © 2011-2022 走看看