以下分为 索引文档(insert) 和 查询文档(select)
1 一个index只有一个type
索引文档时,使用 _doc来代替type
PUT /megacorp/_doc/3 { "first_name" : "Douglas", "last_name" : "Fir", "age" : 35, "about": "I like to build cabinets", "interests": [ "forestry" ] }
查询某一条文档
GET /megacorp/_doc/3
查询姓smith的
GET /megacorp/_search?q=last_name:Smith
2 查询姓smith的,并大于30岁的 DSL 1使用 a and b 2查询a,过滤b
POST /megacorp/_search { "query": { "bool": { "must": [ { "match": { "last_name": "Smith" } }, { "range": { "age": { "gt": 30 } } } ] } } }
POST /megacorp/_search { "query": { "bool": { "must": [ { "match": { "last_name": "Smith" } } ], "filter": { "range": { "age": { "gt": 30 } } } } } }
3短语搜索, 包含关键字的全部分词
https://blog.csdn.net/sinat_29581293/article/details/81486761
GET /megacorp/_search { "query" : { "match_phrase": { "about" : "rock climbing" } } }
4查看关键字分词 standard标准分词汉字分为每个字,英文分为每个单词 ,ik分词 有 ik_smart 和ik_max_word
GET /megacorp/_analyze { "text": ["康师傅","rock climbing"], "analyzer": "standard" }
{ "tokens" : [ { "token" : "康", "start_offset" : 0, "end_offset" : 1, "type" : "<IDEOGRAPHIC>", "position" : 0 }, { "token" : "师", "start_offset" : 1, "end_offset" : 2, "type" : "<IDEOGRAPHIC>", "position" : 1 }, { "token" : "傅", "start_offset" : 2, "end_offset" : 3, "type" : "<IDEOGRAPHIC>", "position" : 2 }, { "token" : "rock", "start_offset" : 4, "end_offset" : 8, "type" : "<ALPHANUM>", "position" : 103 }, { "token" : "climbing", "start_offset" : 9, "end_offset" : 17, "type" : "<ALPHANUM>", "position" : 104 } ] }
5查看某个字段在索引文档时分词结果
GET /test/_analyze { "field": "t_name", "text": ["康师傅","rock climbing"], }
6 查看文档字段 ,t_name字段在索引文档时使用ik_max_word分词,查询文档时使用ik_smart分词
https://segmentfault.com/a/1190000012553894?utm_source=tag-newest
http://localhost:9200/test/_mapping
t_name: { type: "text", similarity: "BM25", fields: { keyword: { type: "keyword", ignore_above: 256 } }, analyzer: "ik_max_word", search_analyzer: "ik_smart" }, t_pyname: { type: "text", fields: { keyword: { type: "keyword", ignore_above: 256 } } },
7高亮关键字
GET /megacorp/_search { "query" : { "match_phrase": { "about" : "rock climbing" } }, "highlight": { "fields": { "about": {} } } }
8es的group_by,聚合 aggregations,进行分析统计
GET /megacorp/_search { "aggs": { "all_inter": { "terms": { "field": "interests.keyword" } } } }
9 聚合时报错,具体原因是聚合需要大量的内存,聚合前,需要将相应的字段开启聚合,或者按上面的方式 使用 .keyword
Fielddata is disabled on text fields by default. Set fielddata=true on [interests] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead
PUT megacorp/_mapping { "properties": { "interests": { "type": "text", "fielddata": true } } }
10聚合时间长,聚合慢, 使用"execution_hint": "map"
https://blog.csdn.net/laoyang360/article/details/79253294
GET /megacorp/_search
{ "query": { "match": { "last_name": "smith" } }, "aggs": { "all_inter": { "terms": { "field": "interests",
"execution_hint": "map"
} } } }
11查询文档,一个字段多个关键字(同一个字段查询多个搜索词) interests字段包含music的或者包含sports的,or
GET /megacorp/_search { "query": { "terms": { "interests": [ "music", "sports" ] } } }
12查询文档,同一个字段包含多个关键字 interests字段包含music的和包含sports的,and
GET /megacorp/_search { "query": { "bool": { "must": [ { "term": { "interests": { "value": "music" } } } , { "term": { "interests": { "value": "sports" } } } ] } } }
12查询文档,一个关键字多个字段(同一个搜索词查询多个字段)
https://blog.csdn.net/dm_vincent/article/details/41820537
GET /megacorp/_search { "query": { "multi_match": { "query": "Smith", "fields": ["last_name","first_name"] } } }
13聚合分级汇总,聚合后的每一组数据进行统计,aggs后再aggs
GET /megacorp/_search { "size":0, "aggs": { "all_inter": { "terms": { "field": "interests", "execution_hint": "map" }, "aggs": { "avg_age": { "avg": { "field": "age" } } } } } }
14 多字段查询, 如一个关键字查询同音字,同义字,形近字,等
https://blog.csdn.net/questiontoomuch/article/details/48493991
同音字可以增加一个字段,如 t_pyname 是t_name的pinyin
同义字增加一个字段, t_shinglesname
- 使用一个词干提取器来将jumps,jumping和jumped索引成它们的词根:jump。然后当用户搜索的是jumped时,我们仍然能够匹配含有jumping的文档。
- 包含同义词,比如jump,leap和hop。
- 移除变音符号或者声调符号:比如,ésta,está和esta都会以esta被索引。