zoukankan      html  css  js  c++  java
  • POJ 1679 The Unique MST

    The Unique MST
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 16690   Accepted: 5782

    Description

    Given a connected undirected graph, tell if its minimum spanning tree is unique. 

    Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties: 
    1. V' = V. 
    2. T is connected and acyclic. 

    Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'. 

    Input

    The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.

    Output

    For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.

    Sample Input

    2
    3 3
    1 2 1
    2 3 2
    3 1 3
    4 4
    1 2 2
    2 3 2
    3 4 2
    4 1 2
    

    Sample Output

    3
    Not Unique!
    

    Source

     
    题意:给一个图,问其最小生成树是否惟一。

    思路:用Kruskal 算出最小生成树的值,并记录每一条边,然后枚举去掉这些边 看其是否也能构成最小生成树且值相同。注意 在删边后,可能图构不成一棵树,得判断一下
     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    const int VM=120;
    const int EM=10010;
    
    struct Edge{
        int u,v;
        int cap;
    }edge[EM];
    
    int n,m,flag;
    int mst,father[VM];
    
    void makeSet(){
        for(int i=1;i<=n;i++){
            father[i]=i;
        }
    }
    
    int findSet(int x){
        if(x!=father[x]){
            father[x]=findSet(father[x]);
        }
        return father[x];
    }
    
    int cmp(Edge a,Edge b){
        return a.cap<b.cap;
    }
    
    void Kruskal(){
        makeSet();
        sort(edge,edge+m,cmp);
        int path[EM],cnt=0;
        mst=0;
        for(int i=0;i<m;i++){
            int u=findSet(edge[i].u);
            int v=findSet(edge[i].v);
            if(u!=v){
                father[v]=u;
                path[cnt++]=i;  //记录路径
                mst+=edge[i].cap;
            }
        }
        for(int k=0;k<cnt;k++){ //枚举去掉每一条边
            makeSet();
            int sum=0,j=0;
            for(int i=0;i<m;i++){
                if(i==path[k])
                    continue;
                int u=findSet(edge[i].u);
                int v=findSet(edge[i].v);
                if(u!=v){
                    father[v]=u;
                    sum+=edge[i].cap;
                    j++;
                }
            }
            if(j==n-1 && sum==mst){     //判断是否能构成树 且 是否与最小生成树相等
                flag=0;
                return ;
            }
        }
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        int t;
        scanf("%d",&t);
        while(t--){
            scanf("%d%d",&n,&m);
            for(int i=0;i<m;i++)
                scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].cap);
            flag=1;
            Kruskal();
            if(flag)
                printf("%d\n",mst);
            else
                printf("Not Unique!\n");
        }
        return 0;
    }
  • 相关阅读:
    AS2 tween缓动
    flash 绑定 swc类文件
    jsfl自运行与被调运行
    一键清除fla文件中的TLF文本
    as 2的 Event.REMOVED_FROM_STAGE
    jsfl 添加代码
    jsfl 删除库指定内容
    文件上传待研究
    SpringMVC单文件上传、多文件上传、文件列表显示、文件下载
    shiro配置参考(二)可以和mybatis的配置放在一个文件中(不建议这样,可以拆分开来,注意相关配置即可)
  • 原文地址:https://www.cnblogs.com/jackge/p/3053203.html
Copyright © 2011-2022 走看看