zoukankan      html  css  js  c++  java
  • POJ 2553 The Bottom of a Graph

    The Bottom of a Graph
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 7514   Accepted: 3083

    Description

    We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
    Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
    Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

    Input

    The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

    Output

    For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

    Sample Input

    3 3
    1 3 2 3 3 1
    2 1
    1 2
    0
    

    Sample Output

    1 3
    2
    

    Source

     
     
    1. 题目大意      若节点V所能到达的点{w},都能反过来到达v,那我们称v是sink。  
    2. 强连通+缩点  
    3. 就是求极大连通分量,最后统计出度为0的点,排序后输出初度为0的分量包含的每一个点。  
    4. 不管怎么样都会存在一个出度为0的点,所以说If the bottom is empty, print empty line是没有用的。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    
    using namespace std;
    
    const int VM=5010;
    const int INF=999999999;
    
    struct Edge{
        int to,nxt;
    }edge[VM*VM];
    
    int n,m,cnt,dep,top,atype,head[VM];
    int dfn[VM],low[VM],vis[VM],indeg[VM],outdeg[VM],belong[VM];
    int stack[VM],res[VM];
    
    void addedge(int cu,int cv){
        edge[cnt].to=cv;
        edge[cnt].nxt=head[cu];
        head[cu]=cnt++;
    }
    
    void Init(){
        cnt=0,atype=0,dep=0,top=0;
        memset(head,-1,sizeof(head));
        memset(vis,0,sizeof(vis));
        memset(low,0,sizeof(low));
        memset(dfn,0,sizeof(dfn));
        memset(indeg,0,sizeof(indeg));
        memset(outdeg,0,sizeof(outdeg));
        memset(belong,0,sizeof(belong));
    }
    
    void Tarjan(int u){
        dfn[u]=low[u]=++dep;
        stack[top++]=u;
        vis[u]=1;
        for(int i=head[u];i!=-1;i=edge[i].nxt){
            int v=edge[i].to;
            if(!dfn[v]){
                Tarjan(v);
                low[u]=min(low[u],low[v]);
            }else if(vis[v])
                low[u]=min(low[u],dfn[v]);
        }
        int j;
        if(dfn[u]==low[u]){
            atype++;
            do{
                j=stack[--top];
                belong[j]=atype;
                vis[j]=0;
            }while(u!=j);
        }
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        while(~scanf("%d",&n) && n){
            Init();
            scanf("%d",&m);
            int u,v;
            while(m--){
                scanf("%d%d",&u,&v);
                addedge(u,v);
            }
            for(int i=1;i<=n;i++)
                if(!dfn[i])
                    Tarjan(i);
            int tmp;
            for(int i=1;i<=n;i++){
                tmp=belong[i];
                for(int j=head[i];j!=-1;j=edge[j].nxt){
                    int v=edge[j].to;
                    if(belong[i]!=belong[v])
                        outdeg[belong[i]]++;
                }
            }
            cnt=0;
            for(int i=1;i<=atype;i++)
                if(outdeg[i]==0)
                    for(int j=1;j<=n;j++)
                        if(belong[j]==i)
                            res[cnt++]=j;
            sort(res,res+cnt);
            if(cnt!=0){
                for(int i=0;i<cnt-1;i++)
                    printf("%d ",res[i]);
                printf("%d\n",res[cnt-1]);
            }else
                printf("\n");
        }
        return 0;
    }
  • 相关阅读:
    Notes about "Exploring Expect"
    Reuse Sonar Checkstyle Violation Report for Custom Data Analysis
    Eclipse带参数调试的方法
    MIT Scheme Development on Ubuntu
    Manage Historical Snapshots in Sonarqube
    U盘自动弹出脚本
    hg的常用配置
    Java程序员的推荐阅读书籍
    使用shared memory 计算矩阵乘法 (其实并没有加速多少)
    CUDA 笔记
  • 原文地址:https://www.cnblogs.com/jackge/p/3077549.html
Copyright © 2011-2022 走看看