zoukankan      html  css  js  c++  java
  • HDU 3586 Information Disturbing (树形DP)

    Information Disturbing

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
    Total Submission(s): 1018    Accepted Submission(s): 376


    Problem Description
    In the battlefield , an effective way to defeat enemies is to break their communication system.
    The information department told you that there are n enemy soldiers and their network which have n-1 communication routes can cover all of their soldiers. Information can exchange between any two soldiers by the communication routes. The number 1 soldier is the total commander and other soldiers who have only one neighbour is the frontline soldier.
    Your boss zzn ordered you to cut off some routes to make any frontline soldiers in the network cannot reflect the information they collect from the battlefield to the total commander( number 1 soldier).
    There is a kind of device who can choose some routes to cut off . But the cost (w) of any route you choose to cut off can’t be more than the device’s upper limit power. And the sum of the cost can’t be more than the device’s life m.
    Now please minimize the upper limit power of your device to finish your task.
     
    Input
    The input consists of several test cases. 
    The first line of each test case contains 2 integers: n(n<=1000)m(m<=1000000).
    Each of the following N-1 lines is of the form:
    ai bi wi
    It means there’s one route from ai to bi(undirected) and it takes wi cost to cut off the route with the device.
    (1<=ai,bi<=n,1<=wi<=1000)
    The input ends with n=m=0.
     
    Output
    Each case should output one integer, the minimal possible upper limit power of your device to finish your task. 
    If there is no way to finish the task, output -1.
     
    Sample Input
    5 5 1 3 2 1 4 3 3 5 5 4 2 6 0 0
     
    Sample Output
    3
     
    Author
    alpc86
     
    Source
     
    Recommend
    zhouzeyong

    题目大意:给定n个敌方据点,1为司令部,其他点各有一条边相连构成一棵树,每条边都有一个权值cost表示破坏这条边的费用,叶子节点为前线。现要切断前线和司令部的联系,每次切断边的费用不能超过上限limit,问切断所有前线与司令部联系所花费的总费用少于m时的最小limit。1<=n<=1000,1<=m<=100万

    解题思路:一看到题目就觉得是树形DP,男人的第六感怎一个准字了得。然后努力地把题目看懂了以后,发现这是一个判定性问题,就是问某个limit是否能够满足条件切断所有前线与司令部的联系,然后找符合条件的最大limit就可以了。想通这点以后就可以二分答案,下限为1,上限为最大的边权,再写一个Tree_DP(limit),判断切断所有前线联系时花费的最小费用是否小等于m,是的话就往后查找,否则向前。

        设dp[i]为切断i的所有子孙叶子所花费的最小费用,状态转移方程: if (i->son.len < limit) dp[i] += min(dp[i->son],i->son.len); (如果与子节点相连的边可选)

                                                                                                              else dp[i]  += dp[i->son];(如果与子节点相连的边不可选)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    
    using namespace std;
    
    const int VM=1010;
    const int INF=1000010;  //开始设为0x3f3f3f3f给了WA
    
    struct Edge{
        int to,nxt;
        int cap;
    }edge[VM<<1];
    
    int n,m,cnt,head[VM];
    int dp[VM],vis[VM];
    
    void addedge(int cu,int cv,int cw){
        edge[cnt].to=cv;
        edge[cnt].cap=cw;
        edge[cnt].nxt=head[cu];
        head[cu]=cnt++;
    }
    
    void DFS(int u,int pre,int lim){
        int flag=0; //标记是不是叶子结点
        dp[u]=0;
        for(int i=head[u];i!=-1;i=edge[i].nxt){
            int v=edge[i].to;
            if(v!=pre){
                flag=1;
                DFS(v,u,lim);
                if(edge[i].cap<=lim)
                    dp[u]+=min(dp[v],edge[i].cap);
                else
                    dp[u]+=dp[v];
            }
        }   
        if(!flag)   //叶子结点无穷大
            dp[u]=INF;
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        while(~scanf("%d%d",&n,&m)){
            if(n==0 && m==0)
                break;
            cnt=0;
            memset(head,-1,sizeof(head));
            int MAX=0;
            int u,v,w;
            for(int i=1;i<n;i++){
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,w);
                addedge(v,u,w);
                if(w>MAX)
                    MAX=w;
            }
            int l=1,r=MAX,ans=-1;
            while(l<=r){
                int mid=(l+r)>>1;
                DFS(1,-1,mid);
                if(dp[1]<=m){
                    ans=mid;
                    r=mid-1;
                }else
                    l=mid+1;
            }
            printf("%d\n",ans);
        }
        return 0;
    }
  • 相关阅读:
    Jquery 复习01
    工具和资源
    常用 npm 和 yarn 命令
    Jenkins 安装 ruby-runtime 出错
    shiro+jwt 实现权限控制
    Sql Server 2008 R2 查询一个实例中存在某个表的数据库
    使用sqlcmd执行连接的时候一直报有语法错误
    Linux信号
    记一次内存爆涨分析 , JVM命令使用
    Java,List操作技巧
  • 原文地址:https://www.cnblogs.com/jackge/p/3090683.html
Copyright © 2011-2022 走看看