zoukankan      html  css  js  c++  java
  • HDU 3666 THE MATRIX PROBLEM (差分约束 深搜 & 广搜)

    THE MATRIX PROBLEM

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 5437    Accepted Submission(s): 1372


    Problem Description
    You have been given a matrix CN*M, each element E of CN*M is positive and no more than 1000, The problem is that if there exist N numbers a1, a2, … an and M numbers b1, b2, …, bm, which satisfies that each elements in row-i multiplied with ai and each elements in column-j divided by bj, after this operation every element in this matrix is between L and U, L indicates the lowerbound and U indicates the upperbound of these elements.
     
    Input
    There are several test cases. You should process to the end of file.
    Each case includes two parts, in part 1, there are four integers in one line, N,M,L,U, indicating the matrix has N rows and M columns, L is the lowerbound and U is the upperbound (1<=N、M<=400,1<=L<=U<=10000). In part 2, there are N lines, each line includes M integers, and they are the elements of the matrix.

     
    Output
    If there is a solution print "YES", else print "NO".
     
    Sample Input
    3 3 1 6 2 3 4 8 2 6 5 2 9
     
    Sample Output
    YES
     
    Source
     
    Recommend
    lcy
     

    题目意思就是是否存在ai,bj,使得l<=cij*(ai/bj)<=u (1<=i<=n,1<=j<=m)成立

    首先,把cij除到两边:l'<=ai/bj<=u',如果差分约束的话,应该是ai-bj的形式,于是可以取对数

    log(l')<=log(ai)-log(bj)<=log(u')

    把log(ai)和log(bj)看成两个点ai和bj,化成求最短路的形式:dis[ai]-dis[bj]<=log(u'),dis[bj]-dis[ai]<=-log(l')

    然后判负环就行,深搜和广搜都可以

    注意,如果spfa队列判负环:

    (1)不必判断某个点入队次数大于N,只要判断是否大于sqrt(1.0*N)

    (2)或者所有点的入队次数大于T*N,即存在负环,一般T取2

    N为所有点的个数

     1, SPFA广搜:

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<queue>
    #include<cmath>
    
    using namespace std;
    
    const int N=810;
    
    struct Edge{
        int to,nxt;
        double cap;
    }edge[N*N];
    
    int n,m,cnt,head[N];
    int vis[N],Count[N];
    double dis[N],L,U;
    
    void addedge(int cu,int cv,double cw){
        edge[cnt].to=cv;    edge[cnt].cap=cw;   edge[cnt].nxt=head[cu];
        head[cu]=cnt++;
    }
    
    int SPFA(){
        int limit=(int)sqrt(1.0*(n+m));
        queue<int> q;
        while(!q.empty())
            q.pop();
        memset(vis,0,sizeof(vis));
        memset(Count,0,sizeof(Count));
        for(int i=0;i<=n+m;i++){
            dis[i]=0;
            q.push(i);
        }
        while(!q.empty()){
            int u=q.front();
            q.pop();
            vis[u]=0;
            for(int i=head[u];i!=-1;i=edge[i].nxt){
                int v=edge[i].to;
                if(dis[v]>dis[u]+edge[i].cap){
                    dis[v]=dis[u]+edge[i].cap;
                    if(!vis[v]){
                        vis[v]=1;
                        if(++Count[v]>limit)
                            return 0;
                        q.push(v);
                    }
                }
            }
        }
        return 1;
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
            cnt=0;
            memset(head,-1,sizeof(head));
            double x;
            for(int i=1;i<=n;i++)
                for(int j=1;j<=m;j++){
                    scanf("%lf",&x);
                    addedge(j+n,i,log(U/x));
                    addedge(i,j+n,-log(L/x));
                }
            if(SPFA())
                puts("YES");
            else
                puts("NO");
        }
        return 0;
    }

    2, SPFA深搜:(这个更快??)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<queue>
    #include<cmath>
    
    using namespace std;
    
    const int N=810;
    
    struct Edge{
        int to,nxt;
        double cap;
    }edge[N*N];
    
    int n,m,cnt,head[N];
    int vis[N],instack[N];
    double dis[N],L,U;
    
    void addedge(int cu,int cv,double cw){
        edge[cnt].to=cv;    edge[cnt].cap=cw;   edge[cnt].nxt=head[cu];
        head[cu]=cnt++;
    }
    
    int SPFA(int u){
        if(instack[u])
            return 0;
        instack[u]=1;
        vis[u]=1;
        for(int i=head[u];i!=-1;i=edge[i].nxt){
            int v=edge[i].to;
            if(dis[v]>dis[u]+edge[i].cap){
                dis[v]=dis[u]+edge[i].cap;
                if(!SPFA(v))
                    return 0;
            }
        }
        instack[u]=0;
        return 1;
    }
    
    int solve(){
        memset(vis,0,sizeof(vis));
        memset(instack,0,sizeof(instack));
        memset(dis,0,sizeof(dis));
        for(int i=1;i<=n+m;i++)
            if(!vis[i]){
                if(!SPFA(i))
                    return 0;
            }
        return 1;
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        while(~scanf("%d%d%lf%lf",&n,&m,&L,&U)){
            cnt=0;
            memset(head,-1,sizeof(head));
            double x;
            for(int i=1;i<=n;i++)
                for(int j=1;j<=m;j++){
                    scanf("%lf",&x);
                    addedge(j+n,i,log(U/x));
                    addedge(i,j+n,-log(L/x));
                }
            if(solve())
                puts("YES");
            else
                puts("NO");
        }
        return 0;
    }
  • 相关阅读:
    开发工具IDEA
    了解java 的一角
    枚举类和Random
    字符串String和StringBuffer进行字符串拼接的发现
    java里的包装类
    String和StringBuffer的区别
    StringBuffer进行字符串拼接
    Hashmat
    第三单元作业总结
    第二单元作业总结
  • 原文地址:https://www.cnblogs.com/jackge/p/3164032.html
Copyright © 2011-2022 走看看