zoukankan      html  css  js  c++  java
  • POJ 3678 Katu Puzzle (经典2-Sat)

    Katu Puzzle
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 6553   Accepted: 2401

    Description

    Katu Puzzle is presented as a directed graph G(VE) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ X≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:

     Xa op Xb = c

    The calculating rules are:

    AND 0 1
    0 0 0
    1 0 1
    OR 0 1
    0 0 1
    1 1 1
    XOR 0 1
    0 0 1
    1 1 0

    Given a Katu Puzzle, your task is to determine whether it is solvable.

    Input

    The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
    The following M lines contain three integers (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.

    Output

    Output a line containing "YES" or "NO".

    Sample Input

    4 4
    0 1 1 AND
    1 2 1 OR
    3 2 0 AND
    3 0 0 XOR

    Sample Output

    YES

    Hint

    X0 = 1, X1 = 1, X2 = 0, X3 = 1.

    Source

     
     

    经典2-SAT问题

    构图时,根据条件找可以确定关系的形如A->B这样的关系式

    i表示i取1,~i表示i取0

    i AND j =1    ~i->i, ~j->j, i->j, j->i,后面两个关系式构成一个环,i,j在同一强连通分量中,可以免去

    i AND j = 0   i->~i, j->~j 而~i推不出j为0还是1

    i OR   j =1    ~i->j, ~j->i

    i OR   J =0    i->~i,  j->~j, ~j->~i, ~i->~j 又有环,可以省略

    i XOR j =1    i->~j,  j->~i,  ~i->j,  ~j->i

    i XOR j =0    i->j,  j->i,  ~i->~j, ~j->~i   又构成两个环

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    
    using namespace std;
    
    const int VM=2010;
    const int EM=4000010;
    const int INF=0x3f3f3f3f;
    
    struct Edge{
        int to,nxt;
    }edge[EM<<1];
    
    int n,m,cnt,dep,top,atype,head[VM];
    int dfn[VM],low[VM],vis[VM],belong[VM];
    int stack[VM];
    
    void Init(){
        cnt=0,  atype=0,    dep=0,  top=0;
        memset(head,-1,sizeof(head));
        memset(vis,0,sizeof(vis));
        memset(low,0,sizeof(low));
        memset(dfn,0,sizeof(dfn));
        memset(belong,0,sizeof(belong));
    }
    
    void addedge(int cu,int cv){
        edge[cnt].to=cv;    edge[cnt].nxt=head[cu];     head[cu]=cnt++;
    }
    
    void Tarjan(int u){
        dfn[u]=low[u]=++dep;
        stack[top++]=u;
        vis[u]=1;
        for(int i=head[u];i!=-1;i=edge[i].nxt){
            int v=edge[i].to;
            if(!dfn[v]){
                Tarjan(v);
                low[u]=min(low[u],low[v]);
            }else if(vis[v])
                low[u]=min(low[u],dfn[v]);
        }
        int j;
        if(dfn[u]==low[u]){
            atype++;
            do{
                j=stack[--top];
                belong[j]=atype;
                vis[j]=0;
            }while(u!=j);
        }
    }
    
    int main(){
    
        //freopen("input.txt","r",stdin);
    
        while(~scanf("%d%d",&n,&m)){
            Init();
            char op[10];
            int i,j,c;
            while(m--){
                scanf("%d%d%d%s",&i,&j,&c,op);
                if(op[0]=='A'){
                    if(c){
                        addedge(2*i+1,2*i);
                        addedge(2*j+1,2*j);
                        //addedge(2*i,2*j);//2*i和2*j在同一个环中,肯定满足
                        //addedge(2*j,2*i);
                    }else{
                        addedge(2*i,2*j+1);
                        addedge(2*j,2*i+1);
                    }
                }else if(op[0]=='O'){
                    if(c){
                        addedge(2*i+1,2*j);
                        addedge(2*j+1,2*i);
                    }else{
                        addedge(2*i,2*i+1);
                        addedge(2*j,2*j+1);
                        //addedge(2*i+1,2*j+1);//同上
                        //addedge(2*j+1,2*i+1);
                    }
                }else{
                    if(c){
                        addedge(2*i,2*j+1);
                        addedge(2*i+1,2*j);
                        addedge(2*j,2*i+1);
                        addedge(2*j+1,2*i);
                    }else{
                        //addedge(2*i,2*j);
                        //addedge(2*j,2*i);
                        //addedge(2*i+1,2*j+1);
                        //addedge(2*j+1,2*i+1);
                    }
                }
            }
            for(i=0;i<2*n;i++)
                if(!dfn[i])
                    Tarjan(i);
            int flag=1;
            for(i=0;i<n;i++)
                if(belong[2*i]==belong[2*i+1]){
                    flag=0;
                    break;
                }
            if(flag)
                puts("YES");
            else
                puts("NO");
        }
        return 0;
    }
  • 相关阅读:
    Oracle.ManagedDataAccess.dll 连接Oracle数据库不需要安装客户端
    Oracle.DataAccess.Client.OracleCommand”的类型初始值设定项引发异常
    SQLAchemy
    MySQL 索引详解大全
    不用任何图片,只用简单的css写出唯美的钟表,就问你行吗?
    Ajax详解
    Mysql自定义函数
    MySQL目录
    Mysql函数集合
    MySQL之扩展(触发器,存储过程等)
  • 原文地址:https://www.cnblogs.com/jackge/p/3180392.html
Copyright © 2011-2022 走看看