Triangle LOVE
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1707 Accepted Submission(s): 729
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Take the sample output for more details.
Sample Input
2
5
00100
10000
01001
11101
11000
5
01111
00000
01000
01100
01110
Sample Output
Case #1: Yes
Case #2: No
Author
BJTU
Source
Recommend
zhoujiaqi2010
题意分析(转载): 此题可以一遍拓扑排序判环求解 即只需要找到一个环, 就必定存在三元环 证明如下: 假设存在一个n元环, 因为a->b有边,b->a必定没边,反之也成立 所以假设有环上三个相邻的点a-> b-> c,那么如果c->a间有边, 就已经形成了一个三元环,如果c->a没边,那么a->c肯定有边, 这样就形成了一个n-1元环。。。。 所以只需证明n大于3时一定有三元环即可,显然成立。
#include<iostream> #include<cstdio> #include<cstring> using namespace std; const int N=2010; int n,indeg[N]; //存储的是节点的入度 char str[N][N]; int main(){ //freopen("input.txt","r",stdin); int t,cases=0; scanf("%d",&t); while(t--){ scanf("%d",&n); int flag=0; memset(indeg,0,sizeof(indeg)); //将所有的节点入度初始化为0 int i,j; for(i=0;i<n;i++){ scanf("%s",str[i]); for(j=0;j<n;j++) if(str[i][j]=='1') //如果i喜欢j,则把j的入度加1 indeg[j]++; } for(i=0;i<n;i++){ for(j=0;j<n;j++) if(indeg[j]==0) //找出入度为0的节点 break; if(j==n){ //任何一个节点的入度都不为0,说明存在环了,则必有三角恋 flag=1; break; }else{ indeg[j]--; //除去当前结点 for(int k=0;k<n;k++) //把从这个节点出发的引起的节点的入度都减去1 if(str[j][k]=='1') indeg[k]--; } } if(flag) printf("Case #%d: Yes ",++cases); else printf("Case #%d: No ",++cases); } return 0; }