zoukankan      html  css  js  c++  java
  • 双显卡笔记本安装CUDA+theano、tensorflow环境

    原文出处:http://www.cnblogs.com/jacklu/p/6377820.html

    个人知乎主页欢迎关注:https://www.zhihu.com/people/jack_lu,相信我会提供高质量的timeline。

    “站在岸上学不会游泳。”看了各种深度学习的新闻、有意思的paper,要开始搭建深度学习环境入坑了。昨天看到一视频展现了tensorflow在Android平台上的应用,感觉潜力巨大,所以选择了tensorflow。

    结合几篇安装博客总结了安装方法,可能是最简便的一种了~

    笔记本Y430p 显卡GTX850M

    操作系统Ubuntu 16.04(经本人测试 14.04 14.10 15.04 15.10 对双显卡的支持都不是特别好)安装好后建议关掉所有更新选项。

    python版本 2.7

    1、首先保证安装好NVIDIA驱动。如下图所示:

    image

    2、安装CUDA

    sudo apt-get update
    sudo apt-get install nvidia-cuda-toolkit

    默认安装cuda 7.5.18 安装之后,是没有/usr/local/cuda*这个文件夹,也没有sample的

    3、由于Ubuntu16.04的gcc和g++都是5.0版的,不兼容CUDA7.5版本,需要降级

    sudo apt-get install gcc-4.9 g++-4.9
    cd /usr/bin
    sudo rm gcc
    sudo rm g++
    sudo ln -s gcc-4.9 gcc
    sudo ln -s g++-4.9 g++

    4、安装cudnn

    下载cudnn 5.0 for cuda7.5 需要nvidia的开发者帐号登录

    image
    解压

    tar -zxf cudnn-7.5-linux-x64-v5.0-ga.tgz
    
    cd cuda

    复制头文件到/usr/local/include

    sudo cp include/cudnn.h /usr/local/include/

    复制lib文件到/usr/local/lib

    sudo cp lib64/* /usr/local/lib/

    并编辑~/.bashrc 添加环境变量

    export LD_LIBRARY_PATH=/usr/local/lib

    5、安装theano

    sudo apt-get install python-numpy python-scipy python-dev python-pip python-nose python-mock python-wheel g++ libopenblas-dev git
    sudo pip install Theano

    编辑配置文件

    sudo gedit ~/.theanorc

    加入

    [global]
    device = gpu
    floatX = float32
    [nvcc]
    flags=-D_FORCE_INLINES

    注意有符号-

    测试,注意cuDNN版本5005

    image

    6、安装tensorflow

    根据自己的实际情况参照官网的这张表选择适合的下载链接。

    # Ubuntu/Linux 64-bit, CPU only, Python 2.7
     export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl
    
    # Ubuntu/Linux 64-bit, GPU enabled, Python 2.7
    # Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
     export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl
    
    # Mac OS X, CPU only, Python 2.7:
     export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/tensorflow-0.9.0-py2-none-any.whl
    
    # Ubuntu/Linux 64-bit, CPU only, Python 3.4
     export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp34-cp34m-linux_x86_64.whl
    
    # Ubuntu/Linux 64-bit, GPU enabled, Python 3.4
    # Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
     export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp34-cp34m-linux_x86_64.whl
    
    # Ubuntu/Linux 64-bit, CPU only, Python 3.5
     export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.9.0-cp35-cp35m-linux_x86_64.whl
    
    # Ubuntu/Linux 64-bit, GPU enabled, Python 3.5
    # Requires CUDA toolkit 7.5 and CuDNN v4. For other versions, see "Install from sources" below.
     export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp35-cp35m-linux_x86_64.whl
    
    # Mac OS X, CPU only, Python 3.4 or 3.5:
     export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/mac/tensorflow-0.9.0-py3-none-any.whl

    我在这里选择 64-bit GPU Python 2.7

    export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.9.0-cp27-none-linux_x86_64.whl

    然后根据自己情况选择

    # Python 2
     pip install --upgrade $TF_BINARY_URL
    
    # Python 3
     pip3 install --upgrade $TF_BINARY_URL

    我在这里选择Python 2

    pip install --upgrade $TF_BINARY_URL

    测试Tensorflow是否安装成功并使用了CUDA,依次执行以下python代码

    import tensorflow as tf
    a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
    b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
    c = tf.matmul(a, b)
    sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
    print sess.run(c)

    实验结果如下,表示安装成功!可以开始新的征程啦~

    image

    remark:

    cudnn version should be 5.1

    export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64"

    export CUDA_HOME=/usr/local/cuda

    参考资料:

    https://zhuanlan.zhihu.com/p/23042536?refer=tomasen

    https://www.zhihu.com/question/48027732?from=profile_question_card

    http://www.ifcoder.us/2003

  • 相关阅读:
    python signal模块
    linux 下修改时间
    CentOS7关闭防火墙和SELinux
    centOS安装配置NFS
    python 调 java(胶水就是胶水)
    uuid
    python 最麻烦的时间有药了
    linux crontab
    Linux awk+uniq+sort 统计文件中某字符串出现次数并排序
    trove taskmanger api
  • 原文地址:https://www.cnblogs.com/jacklu/p/6377820.html
Copyright © 2011-2022 走看看