Let S = s1 s2 ... s2n be a well-formed string of parentheses. S can be encoded in two different ways:
- By an integer sequence P = p1 p2 ... pn where pi is the number of left parentheses before the ith right parenthesis in S (P-sequence).
- By an integer sequence W = w1 w2 ... wn where for each right parenthesis, say a in S, we associate an integer which is the number of right parentheses counting from the matched left parenthesis of a up to a. (W-sequence).
Following is an example of the above encodings:
S (((()()())))
P-sequence 4 5 6666
W-sequence 1 1 1456
Write a program to convert P-sequence of a well-formed string to the W-sequence of the same string.
Input
The first line of the input contains a single integer t (1 <= t <= 10), the number of test cases, followed by the input data for each test case. The first line of each test case is an integer n (1 <= n <= 20), and the second line is the P-sequence
of a well-formed string. It contains n positive integers, separated with blanks, representing the P-sequence.
Output
The output consists of exactly t lines corresponding to test cases. For each test case, the output line should contain n integers describing the W-sequence of the string corresponding to its given P-sequence.
Sample Input
2
6
4 5 6 6 6 6
9
4 6 6 6 6 8 9 9 9
Sample Output
1 1 1 4 5 6
1 1 2 4 5 1 1 3 9
先构建括号然后再查找w序列
AC代码:
#include<iostream> #include<stdio.h> #include<string> using namespace std; string p; void add(int num) { int len=p.length(); for(int i=0;i<len;i++) { if(p[i]=='(')num--; } while(num--) { p+='('; } p+=')'; } int main() { int cas; cin>>cas; while(cas--) { int n; cin>>n; int *num1=new int[n]; p=""; for(int i=0;i<n;i++)//构建括号 { cin>>num1[i]; add(num1[i]); } // cout<<p<<endl; //构建w序列 int len=p.length(); int start=0; int k=0; int w[100]; for(int i=start;i<len;i++) { int sum=1; int count=0; if(p[i]==')') { start=i+1; for(int j=i-1;j>=0;j--) { if(p[j]=='(') { sum--; count++; } if(p[j]==')') { sum++; } if(sum==0) { w[k++]=count;//找到匹配括号 break;//开始寻找下一个匹配括号 } } } } for(int i=0;i<k;i++) { cout<<w[i]; if(i==k-1)cout<<endl; else cout<<' '; } } }