zoukankan      html  css  js  c++  java
  • 杭电ACM1013

    Digital Roots
    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 74529    Accepted Submission(s): 23232

    Problem Description
    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    Input
    The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.

    Output
    For each integer in the input, output its digital root on a separate line of the output.

    Sample Input
    24
    39
    0

    Sample Output
    6
    3

     1 #include"stdio.h"
     2 #include"math.h"
     3 
     4 int main()    /*language C edition*/
     5 {
     6     int n,sum,i;
     7     while(scanf("%d",&n),sum=0,n!=0)
     8     {
     9 loop:           for(i=1;i<=n;i++)
    10             if(pow(10,i)>n)
    11                 break;
    12         for(;i>0;i--)
    13         {
    14                 sum=sum+n/int(pow(10,i-1));
    15             n=n-n/int(pow(10,i-1))*int(pow(10,i-1));
    16         }
    17         if(sum<=9)
    18             printf("%d
    ",sum);
    19         else
    20         {
    21             n=sum;
    22             sum=0;
    23             goto loop;
    24         }
    25     }
    26     return(0);
    27 }
    solution
  • 相关阅读:
    基于聚宽量化交易平台实现量化交易策略
    量化交易——双均线策略(金叉死叉)
    商城支付功能
    商城——结算中心模块
    Tushare(金融数据接口包)
    CSS页面布局单位总结
    Python
    Python
    无需编程的爬虫
    Python
  • 原文地址:https://www.cnblogs.com/jahnson/p/8593616.html
Copyright © 2011-2022 走看看