zoukankan      html  css  js  c++  java
  • hadoop3.2+Centos7+5个节点主从模式配置

    准备工作:

    hadoop3.2.0+jdk1.8+centos7+zookeeper3.4.5

    以上是我搭建集群使用的基础包

    一、环境准备

    master1 master2 slave1 slave2 slave3
    jdk、NameNode、DFSZKFailoverController(zkfc) jdk、NameNode、DFSZKFailoverController(zkfc) jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain jdk、hadoop、zookeeper DataNode、NodeManager、JournalNode、QuorumPeerMain

    说明:

    在hadoop集群中通常由两个namenode组成,一个处于active状态,一个处于stanbdy状态,Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步active namenode的状态,以便能够在它失败时快速进行切换。

    hadoop官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode这里还配置了一个zookeeper集群,用于ZKFC(DFSZKFailoverController)故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为standby状态。

    hadoop中依然存在一个问题,就是ResourceManager只有一个,存在单点故障,hadoop-3.2.0解决了这个问题,有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调。

    将五个虚拟机分别关闭防火墙,更改主机名:

    systemctl stop firewalld
    systemctl disabled firewalld
    
    vim /etc/hostname
    在五台虚拟机依次修改,保存
    master1
    master2
    slave1
    slave2
    slave3

    配置hosts文件:

    vim /etc/hosts
    #添加内容
    master1 192.168.60.10
    master2 192.168.60.11
    slave1 192.168.60.12
    slave2 192.168.60.13
    slave3 192.168.60.14

    配置免密登录:

    ssh-keygen -t rsa  #在每台虚拟机执行
    cd /root/.ssh/
    cat id_rsa.pub >> authorized_keys
    scp authorized_keys root@master2:/root/.ssh/
    #一次执行上述步骤,最后分发 authorized_keys 文件到各个节点

    二、安装步骤

    jdk1.8安装:

    1.解压文件

    tar -zxvf jdk1.8.tar.gz -C /usr/local  #自己定义目录

    2.配置环境变量

    vim /etc/profile
    
    export JAVA_HOME=/usr/local/jdk
    export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar
    export PATH=$JAVA_HOME/bin:$PATH

    source /etc/profile  #更新资源
    java -version  #验证

    zookeeper安装:

    1.解压zookeeper

    tar -zxvf zookeeper-3.4.5.tar.gz -C /usr/local/soft  #自己定义目录

    2.修改配置文件

    cd /usr/local/zookeeper-3.4.5/conf/
    cp zoo_sample.cfg zoo.cfg
    vim zoo.cfg
    #修改一下内容
    
    
    dataDir=/usr/local/soft/zookeeper-3.4.5/tmp
    在后面添加:
    server.1=slave1:2888:3888
    server.2=slave2:2888:3888
    server.3=slave3:2888:3888
    #保存退出

    3.在zookeeper目录下创建tmp文件夹

    mkdir /usr/local/soft/zookeeper-3.4.5/tmp
    再创建一个空文件
    touch /usr/local/soft/zookeeper-3.4.5/tmp/myid
    最后向该文件写入ID
    echo 1 > /usr/local/soft/zookeeper-3.4.5/tmp/myid

    4.将配置好的zookeeper拷贝到其他节点(首先分别在slave2、slave3根目录下创建一个soft目录:mkdir /usr/local/soft/)

    scp -r /usr/local/soft/zookeeper-3.4.5/ itcast06:/usr/local/soft
    scp -r /usr/local/soft/zookeeper-3.4.5/ itcast07:/usr/local/soft

    5.注意要修改myid内容

    slave2:
    echo 2 > /usr/local/soft/zookeeper-3.4.5/tmp/myid
    slave3:
    echo 3 > /usr/local/soft/zookeeper-3.4.5/tmp/myid

    6.启动zookeeperokeeper集群(三台机器都要启动)

    cd 到zookeeper/conf下
    ./zdServer.sh start

    hadoop集群配置:

    1.解压文件

    tar -zxvf hadoop-3.2.0.tar.gz -C /usr/local/soft/

    2.添加环境变量

    vim /etc/profile
    
    export HADOOP_HOME=/usr/local/soft/hadoop-3.2.0
    export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/bin:$PATH
    
    source /etc/profile  #更新资源
    hadoop version  #验证

    3.配置hadoop-env.sh,添加JAVA_HOME 

    export JAVA_HOME=/usr/local/jdk

    4.配置core-site.xml

    <configuration>
    <!-- 指定hdfs的nameservice为ns1 -->
    <property>
    <name>fs.defaultFS</name>
    <value>hdfs://ns1</value>
    </property>
    <!-- 指定hadoop临时目录 -->
    <property>
    <name>hadoop.tmp.dir</name>
    <value>/usr/local/soft/hadoop-3.2.0/tmp</value>
    </property>
    <!-- 指定zookeeper地址 -->
    <property>
    <name>ha.zookeeper.quorum</name>
    <value>slave1:2181,slave2:2181,slave3:2181</value>
    </property>
    </configuration>

    5.配置hdfs-site.xml

    <configuration>
    <!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 -->
    <property>
    <name>dfs.nameservices</name>
    <value>ns1</value>
    </property>
    <!-- ns1下面有两个NameNode,分别是nn1,nn2 -->
    <property>
    <name>dfs.ha.namenodes.ns1</name>
    <value>nn1,nn2</value>
    </property>
    <!-- nn1的RPC通信地址 -->
    <property>
    <name>dfs.namenode.rpc-address.ns1.nn1</name>
    <value>master1:9000</value>
    </property>
    <!-- nn1的http通信地址 -->
    <property>
    <name>dfs.namenode.http-address.ns1.nn1</name>
    <value>master1:50070</value>
    </property>
    <!-- nn2的RPC通信地址 -->
    <property>
    <name>dfs.namenode.rpc-address.ns1.nn2</name>
    <value>master2:9000</value>
    </property>
    <!-- nn2的http通信地址 -->
    <property>
    <name>dfs.namenode.http-address.ns1.nn2</name>
    <value>master2:50070</value>
    </property>
    <!-- 指定NameNode的元数据在JournalNode上的存放位置 -->
    <property>
    <name>dfs.namenode.shared.edits.dir</name>
    <value>qjournal://slave1:8485;slave2:8485;slave3:8485/ns1</value>
    </property>
    <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
    <property>
    <name>dfs.journalnode.edits.dir</name>
    <value>/usr/local/soft/hadoop-3.2.0/journal</value>
    </property>
    <!-- 开启NameNode失败自动切换 -->
    <property>
    <name>dfs.ha.automatic-failover.enabled</name>
    <value>true</value>
    </property>
    <!-- 配置失败自动切换实现方式 -->
    <property>
    <name>dfs.client.failover.proxy.provider.ns1</name>
    <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
    </property>
    <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行-->
    <property>
    <name>dfs.ha.fencing.methods</name>
    <value>
        sshfence
        shell(/bin/true)
    </value>
    </property>
    <!-- 使用sshfence隔离机制时需要ssh免登陆 -->
    <property>
    <name>dfs.ha.fencing.ssh.private-key-files</name>
    <value>/home/hadoop/.ssh/id_rsa</value>
    </property>
    <!-- 配置sshfence隔离机制超时时间 -->
    <property>
    <name>dfs.ha.fencing.ssh.connect-timeout</name>
    <value>30000</value>
    </property>
    </configuration>

    6.配置mapred-site.xml

    <configuration>
    <!-- 指定mr框架为yarn方式 -->
    <property>
    <name>mapreduce.framework.name</name>
    <value>yarn</value>
    </property>
    </configuration>

    7.配置yarn-site.xml

    <configuration>
    <!-- 开启RM高可靠 -->
    <property>
    <name>yarn.resourcemanager.ha.enabled</name>
    <value>true</value>
    </property>
    <!-- 指定RM的cluster id -->
    <property> <name>yarn.resourcemanager.cluster-id</name> <value>yrc</value> </property> <!-- 指定RM的名字 --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2,rm3</value> </property> <!-- 分别指定RM的地址 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>slave1</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>slave2</value> </property>
    <property>
    <name>yarn.resourcemanager.hostname.rm3</name>
    <value>slave3</value>
    </property> <!-- 指定zk集群地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>slave1:2181,slave2:2181,slave3:2181</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property>
    <!-- 防止运行mapreduce出错根据hadoop classpath输出决定value -->
    <property>
    <name>yarn.application.classpath</name>
    <value>/usr/local/soft/hadoop-3.2.0/etc/hadoop:/usr/local/soft/hadoop-3.2.0/share/hadoop/common/lib/*:/usr/local/soft/hadoop-3.2.0/share/hadoop/common/*:/usr/local/soft/hadoop-3.2.0/share/hadoop/hdfs:/usr/local/soft/hadoop-3.2.0/share/hadoop/hdfs/lib/*:/usr/local/soft/hadoop-3.2.0/share/hadoop/hdfs/*:/usr/local/soft/hadoop-3.2.0/share/hadoop/mapreduce/lib/*:/usr/local/soft/hadoop-3.2.0/share/hadoop/mapreduce/*:/usr/local/soft/hadoop-3.2.0/share/hadoop/yarn:/usr/local/soft/hadoop-3.2.0/share/hadoop/yarn/lib/*:/usr/local/soft/hadoop-3.2.0/share/hadoop/yarn/*</value>
    </property>
    </configuration>

    8.配置workers

    slave1
    slave2
    slave3

    9.配置sbin/start-yarn.sh、sbin/stop-yarn.sh 和 sbin/start-dfs.sh sbin/stop-dfs.sh

    dfs添加:
    HDFS_NAMENODE_USER=root HDFS_DATANODE_USER=root HDFS_JOURNALNODE_USER=root HDFS_ZKFC_USER=root
    yarn添加:

     YARN_RESOURCEMANAGER_USER=root
     HADOOP_SECURE_DN_USER=yarn
     YARN_NODEMANAGER_USER=root

    10.将Hadoop3.2.0分发到各个节点

    scp -r hadoop3.2.0 root@master2:/usr/local/soft/
    scp -r hadoop3.2.0 root@slave1:/usr/local/soft/
    scp -r hadoop3.2.0 root@slave2:/usr/local/soft/
    scp -r hadoop3.2.0 root@slave3:/usr/local/soft/

    三、启动集群

    zookeeper集群已经启动

    cd /usr/local/soft/zookeeper-3.4.5/bin/
    ./zkServer.sh start
    #查看状态:一个leader,两个follower
    ./zkServer.sh status

     

     

     

    启动journalnode(分别在在slave1、slave2、slave3上执行)

    cd /usr/local/soft/hadoop-3.2.0
    sbin/hadoop-daemon.sh start journalnode
    #运行jps命令检验,多了JournalNode进程

    格式化HDFS

    #在master1上执行命令:
    hdfs namenode -format
    #格式化后会在根据core-site.xml中的hadoop.tmp.dir配置生成个文件,这里我配置的是/usr/local/soft/hadoop-3.2.0/tmp,然后将/usr/local/soft/hadoop-3.2.0/tmp拷贝到itcast02的/usr/local/soft/hadoop-3.2.0/tmp下。 
    scp -r tmp/ root@master2:/usr/local/soft/hadoop-3.2.0  #分发到各个节点

    格式化ZK(在master1)上执行

    hdfs zkfc -formatZK

    启动集群(在master1)执行

    sbin/start-dfs.sh
    sbin/start-yarn.sh

     

     

     

     

     

     

    验证YARN:
    运行一下hadoop提供的demo中的WordCount程序:

    cd到hadoop目录下:
    hadoop fs -put /etc/profile /
    hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-3.2.0.jar wordcount /profile /out
  • 相关阅读:
    【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测
    【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维
    【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类
    【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机
    【原】机器学习公开课 目录(课程笔记、测验习题答案、编程作业源码)...持续更新...
    【原】Coursera—Andrew Ng机器学习—Week 11 习题—Photo OCR
    【原】Coursera—Andrew Ng机器学习—Week 10 习题—大规模机器学习
    【原】Coursera—Andrew Ng机器学习—Week 9 习题—异常检测
    【原】Coursera—Andrew Ng机器学习—Week 8 习题—聚类 和 降维
    【原】Coursera—Andrew Ng机器学习—Week 7 习题—支持向量机SVM
  • 原文地址:https://www.cnblogs.com/jake-jin/p/12024659.html
Copyright © 2011-2022 走看看