zoukankan      html  css  js  c++  java
  • Java 设计模式

    设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的,设计模式使代码编制真正工程化,设计模式是软件工程的基石,如同大厦的一块块砖石一样。项目中合理的运用设计模式可以完美的解决很多问题,每种模式在现在中都有相应的原理来与之对应,每一个模式描述了一个在我们周围不断重复发生的问题,以及该问题的核心解决方案,这也是它能被广泛应用的原因。

     

    一、设计模式的分类

    总体来说设计模式分为三大类:

    创建型模式,共五种:工厂方法模式、抽象工厂模式、单例模式、建造者模式、原型模式。

    结构型模式,共七种:适配器模式、装饰器模式、代理模式、外观模式、桥接模式、组合模式、享元模式。

    行为型模式,共十一种:策略模式、模板方法模式、观察者模式、迭代子模式、责任链模式、命令模式、备忘录模式、状态模式、访问者模式、中介者模式、解释器模式。

    其实还有两类:并发型模式和线程池模式。用一个图片来整体描述一下:

    二、设计模式的六大原则

    1、开闭原则(Open Close Principle)

    开闭原则就是说对扩展开放,对修改关闭。在程序需要进行拓展的时候,不能去修改原有的代码,实现一个热插拔的效果。所以一句话概括就是:为了使程序的扩展性好,易于维护和升级。想要达到这样的效果,我们需要使用接口和抽象类,后面的具体设计中我们会提到这点。

    2、里氏代换原则(Liskov Substitution Principle)

    里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影响时,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为。里氏代换原则是对“开-闭”原则的补充。实现“开-闭”原则的关键步骤就是抽象化。而基类与子类的继承关系就是抽象化的具体实现,所以里氏代换原则是对实现抽象化的具体步骤的规范。—— From Baidu 百科

    3、依赖倒转原则(Dependence Inversion Principle)

    这个是开闭原则的基础,具体内容:真对接口编程,依赖于抽象而不依赖于具体。

    4、接口隔离原则(Interface Segregation Principle)

    这个原则的意思是:使用多个隔离的接口,比使用单个接口要好。还是一个降低类之间的耦合度的意思,从这儿我们看出,其实设计模式就是一个软件的设计思想,从大型软件架构出发,为了升级和维护方便。所以上文中多次出现:降低依赖,降低耦合。

    5、迪米特法则(最少知道原则)(Demeter Principle)

    为什么叫最少知道原则,就是说:一个实体应当尽量少的与其他实体之间发生相互作用,使得系统功能模块相对独立。

    6、合成复用原则(Composite Reuse Principle)

    原则是尽量使用合成/聚合的方式,而不是使用继承。

    三、Java的23中设计模式

    从这一块开始,我们详细介绍Java中23种设计模式的概念,应用场景等情况,并结合他们的特点及设计模式的原则进行分析。

    1、工厂方法模式(Factory Method)

    工厂方法模式分为三种:

    11、普通工厂模式,就是建立一个工厂类,对实现了同一接口的一些类进行实例的创建。首先看下关系图:

    举例如下:(我们举一个发送邮件和短信的例子)

    首先,创建二者的共同接口:

    1. public interface Sender {  
    2.     public void Send();  
    3. }  
    public interface Sender {
    	public void Send();
    }

    其次,创建实现类:

    1. public class MailSender implements Sender {  
    2.     @Override  
    3.     public void Send() {  
    4.         System.out.println("this is mailsender!");  
    5.     }  
    6. }  
    public class MailSender implements Sender {
    	@Override
    	public void Send() {
    		System.out.println("this is mailsender!");
    	}
    }
    1. public class SmsSender implements Sender {  
    2.   
    3.     @Override  
    4.     public void Send() {  
    5.         System.out.println("this is sms sender!");  
    6.     }  
    7. }  
    public class SmsSender implements Sender {
    
    	@Override
    	public void Send() {
    		System.out.println("this is sms sender!");
    	}
    }

    最后,建工厂类:

    1. public class SendFactory {  
    2.   
    3.     public Sender produce(String type) {  
    4.         if ("mail".equals(type)) {  
    5.             return new MailSender();  
    6.         } else if ("sms".equals(type)) {  
    7.             return new SmsSender();  
    8.         } else {  
    9.             System.out.println("请输入正确的类型!");  
    10.             return null;  
    11.         }  
    12.     }  
    13. }  
    public class SendFactory {
    
    	public Sender produce(String type) {
    		if ("mail".equals(type)) {
    			return new MailSender();
    		} else if ("sms".equals(type)) {
    			return new SmsSender();
    		} else {
    			System.out.println("请输入正确的类型!");
    			return null;
    		}
    	}
    }

    我们来测试下:

    1. public class FactoryTest {  
    2.   
    3.     public static void main(String[] args) {  
    4.         SendFactory factory = new SendFactory();  
    5.         Sender sender = factory.produce("sms");  
    6.         sender.Send();  
    7.     }  
    8. }  
    public class FactoryTest {
    
    	public static void main(String[] args) {
    		SendFactory factory = new SendFactory();
    		Sender sender = factory.produce("sms");
    		sender.Send();
    	}
    }

    输出:this is sms sender!

    22、多个工厂方法模式,是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式是提供多个工厂方法,分别创建对象。关系图:

    将上面的代码做下修改,改动下SendFactory类就行,如下:

    1. public class SendFactory {  
    2.       
    3.     public Sender produceMail(){  
    4.         return new MailSender();  
    5.     }  
    6.       
    7.     public Sender produceSms(){  
    8.         return new SmsSender();  
    9.     }  
    10. }  
    public class SendFactory {
    	
    	public Sender produceMail(){
    		return new MailSender();
    	}
    	
    	public Sender produceSms(){
    		return new SmsSender();
    	}
    }

    测试类如下:

    1. public class FactoryTest {  
    2.   
    3.     public static void main(String[] args) {  
    4.         SendFactory factory = new SendFactory();  
    5.         Sender sender = factory.produceMail();  
    6.         sender.Send();  
    7.     }  
    8. }  
    public class FactoryTest {
    
    	public static void main(String[] args) {
    		SendFactory factory = new SendFactory();
    		Sender sender = factory.produceMail();
    		sender.Send();
    	}
    }

    输出:this is mailsender!

    33、静态工厂方法模式,将上面的多个工厂方法模式里的方法置为静态的,不需要创建实例,直接调用即可。

    1. public class SendFactory {  
    2.       
    3.     public static Sender produceMail(){  
    4.         return new MailSender();  
    5.     }  
    6.       
    7.     public static Sender produceSms(){  
    8.         return new SmsSender();  
    9.     }  
    10. }  
    public class SendFactory {
    	
    	public static Sender produceMail(){
    		return new MailSender();
    	}
    	
    	public static Sender produceSms(){
    		return new SmsSender();
    	}
    }
    1. public class FactoryTest {  
    2.   
    3.     public static void main(String[] args) {      
    4.         Sender sender = SendFactory.produceMail();  
    5.         sender.Send();  
    6.     }  
    7. }  
    public class FactoryTest {
    
    	public static void main(String[] args) {	
    		Sender sender = SendFactory.produceMail();
    		sender.Send();
    	}
    }

    输出:this is mailsender!

    总体来说,工厂模式适合:凡是出现了大量的产品需要创建,并且具有共同的接口时,可以通过工厂方法模式进行创建。在以上的三种模式中,第一种如果传入的字符串有误,不能正确创建对象,第三种相对于第二种,不需要实例化工厂类,所以,大多数情况下,我们会选用第三种——静态工厂方法模式。

    2、抽象工厂模式(Abstract Factory)

    工厂方法模式有一个问题就是,类的创建依赖工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则,所以,从设计角度考虑,有一定的问题,如何解决?就用到抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。因为抽象工厂不太好理解,我们先看看图,然后就和代码,就比较容易理解。

    请看例子:

    1. public interface Sender {  
    2.     public void Send();  
    3. }  
    public interface Sender {
    	public void Send();
    }

    两个实现类:

    1. public class MailSender implements Sender {  
    2.     @Override  
    3.     public void Send() {  
    4.         System.out.println("this is mailsender!");  
    5.     }  
    6. }  
    public class MailSender implements Sender {
    	@Override
    	public void Send() {
    		System.out.println("this is mailsender!");
    	}
    }
    1. public class SmsSender implements Sender {  
    2.   
    3.     @Override  
    4.     public void Send() {  
    5.         System.out.println("this is sms sender!");  
    6.     }  
    7. }  
    public class SmsSender implements Sender {
    
    	@Override
    	public void Send() {
    		System.out.println("this is sms sender!");
    	}
    }

    两个工厂类:

    1. public class SendMailFactory implements Provider {  
    2.       
    3.     @Override  
    4.     public Sender produce(){  
    5.         return new MailSender();  
    6.     }  
    7. }  
    public class SendMailFactory implements Provider {
    	
    	@Override
    	public Sender produce(){
    		return new MailSender();
    	}
    }
    1. public class SendSmsFactory implements Provider{  
    2.   
    3.     @Override  
    4.     public Sender produce() {  
    5.         return new SmsSender();  
    6.     }  
    7. }  
    public class SendSmsFactory implements Provider{
    
    	@Override
    	public Sender produce() {
    		return new SmsSender();
    	}
    }

    在提供一个接口:

    1. public interface Provider {  
    2.     public Sender produce();  
    3. }  
    public interface Provider {
    	public Sender produce();
    }

    测试类:

    1. public class Test {  
    2.   
    3.     public static void main(String[] args) {  
    4.         Provider provider = new SendMailFactory();  
    5.         Sender sender = provider.produce();  
    6.         sender.Send();  
    7.     }  
    8. }  
    public class Test {
    
    	public static void main(String[] args) {
    		Provider provider = new SendMailFactory();
    		Sender sender = provider.produce();
    		sender.Send();
    	}
    }

    其实这个模式的好处就是,如果你现在想增加一个功能:发及时信息,则只需做一个实现类,实现Sender接口,同时做一个工厂类,实现Provider接口,就OK了,无需去改动现成的代码。这样做,拓展性较好!

    3、单例模式(Singleton

    单例对象(Singleton)是一种常用的设计模式。在Java应用中,单例对象能保证在一个JVM中,该对象只有一个实例存在。这样的模式有几个好处:

    1、某些类创建比较频繁,对于一些大型的对象,这是一笔很大的系统开销。

    2、省去了new操作符,降低了系统内存的使用频率,减轻GC压力。

    3、有些类如交易所的核心交易引擎,控制着交易流程,如果该类可以创建多个的话,系统完全乱了。(比如一个军队出现了多个司令员同时指挥,肯定会乱成一团),所以只有使用单例模式,才能保证核心交易服务器独立控制整个流程。

    首先我们写一个简单的单例类:

    1. public class Singleton {  
    2.   
    3.     /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */  
    4.     private static Singleton instance = null;  
    5.   
    6.     /* 私有构造方法,防止被实例化 */  
    7.     private Singleton() {  
    8.     }  
    9.   
    10.     /* 静态工程方法,创建实例 */  
    11.     public static Singleton getInstance() {  
    12.         if (instance == null) {  
    13.             instance = new Singleton();  
    14.         }  
    15.         return instance;  
    16.     }  
    17.   
    18.     /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  
    19.     public Object readResolve() {  
    20.         return instance;  
    21.     }  
    22. }  
    public class Singleton {
    
    	/* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载 */
    	private static Singleton instance = null;
    
    	/* 私有构造方法,防止被实例化 */
    	private Singleton() {
    	}
    
    	/* 静态工程方法,创建实例 */
    	public static Singleton getInstance() {
    		if (instance == null) {
    			instance = new Singleton();
    		}
    		return instance;
    	}
    
    	/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
    	public Object readResolve() {
    		return instance;
    	}
    }

    这个类可以满足基本要求,但是,像这样毫无线程安全保护的类,如果我们把它放入多线程的环境下,肯定就会出现问题了,如何解决?我们首先会想到对getInstance方法加synchronized关键字,如下:

    1. public static synchronized Singleton getInstance() {  
    2.         if (instance == null) {  
    3.             instance = new Singleton();  
    4.         }  
    5.         return instance;  
    6.     }  
    public static synchronized Singleton getInstance() {
    		if (instance == null) {
    			instance = new Singleton();
    		}
    		return instance;
    	}

    但是,synchronized关键字锁住的是这个对象,这样的用法,在性能上会有所下降,因为每次调用getInstance(),都要对对象上锁,事实上,只有在第一次创建对象的时候需要加锁,之后就不需要了,所以,这个地方需要改进。我们改成下面这个:

    1. public static Singleton getInstance() {  
    2.         if (instance == null) {  
    3.             synchronized (instance) {  
    4.                 if (instance == null) {  
    5.                     instance = new Singleton();  
    6.                 }  
    7.             }  
    8.         }  
    9.         return instance;  
    10.     }  
    public static Singleton getInstance() {
    		if (instance == null) {
    			synchronized (instance) {
    				if (instance == null) {
    					instance = new Singleton();
    				}
    			}
    		}
    		return instance;
    	}

    似乎解决了之前提到的问题,将synchronized关键字加在了内部,也就是说当调用的时候是不需要加锁的,只有在instance为null,并创建对象的时候才需要加锁,性能有一定的提升。但是,这样的情况,还是有可能有问题的,看下面的情况:在Java指令中创建对象和赋值操作是分开进行的,也就是说instance = new Singleton();语句是分两步执行的。但是JVM并不保证这两个操作的先后顺序,也就是说有可能JVM会为新的Singleton实例分配空间,然后直接赋值给instance成员,然后再去初始化这个Singleton实例。这样就可能出错了,我们以A、B两个线程为例:

    a>A、B线程同时进入了第一个if判断

    b>A首先进入synchronized块,由于instance为null,所以它执行instance = new Singleton();

    c>由于JVM内部的优化机制,JVM先画出了一些分配给Singleton实例的空白内存,并赋值给instance成员(注意此时JVM没有开始初始化这个实例),然后A离开了synchronized块。

    d>B进入synchronized块,由于instance此时不是null,因此它马上离开了synchronized块并将结果返回给调用该方法的程序。

    e>此时B线程打算使用Singleton实例,却发现它没有被初始化,于是错误发生了。

    所以程序还是有可能发生错误,其实程序在运行过程是很复杂的,从这点我们就可以看出,尤其是在写多线程环境下的程序更有难度,有挑战性。我们对该程序做进一步优化:

    1. private static class SingletonFactory{           
    2.         private static Singleton instance = new Singleton();           
    3.     }           
    4.     public static Singleton getInstance(){           
    5.         return SingletonFactory.instance;           
    6.     }   
    private static class SingletonFactory{         
            private static Singleton instance = new Singleton();         
        }         
        public static Singleton getInstance(){         
            return SingletonFactory.instance;         
        } 

    实际情况是,单例模式使用内部类来维护单例的实现,JVM内部的机制能够保证当一个类被加载的时候,这个类的加载过程是线程互斥的。这样当我们第一次调用getInstance的时候,JVM能够帮我们保证instance只被创建一次,并且会保证把赋值给instance的内存初始化完毕,这样我们就不用担心上面的问题。同时该方法也只会在第一次调用的时候使用互斥机制,这样就解决了低性能问题。这样我们暂时总结一个完美的单例模式:

    1. public class Singleton {  
    2.   
    3.     /* 私有构造方法,防止被实例化 */  
    4.     private Singleton() {  
    5.     }  
    6.   
    7.     /* 此处使用一个内部类来维护单例 */  
    8.     private static class SingletonFactory {  
    9.         private static Singleton instance = new Singleton();  
    10.     }  
    11.   
    12.     /* 获取实例 */  
    13.     public static Singleton getInstance() {  
    14.         return SingletonFactory.instance;  
    15.     }  
    16.   
    17.     /* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */  
    18.     public Object readResolve() {  
    19.         return getInstance();  
    20.     }  
    21. }  
    public class Singleton {
    
    	/* 私有构造方法,防止被实例化 */
    	private Singleton() {
    	}
    
    	/* 此处使用一个内部类来维护单例 */
    	private static class SingletonFactory {
    		private static Singleton instance = new Singleton();
    	}
    
    	/* 获取实例 */
    	public static Singleton getInstance() {
    		return SingletonFactory.instance;
    	}
    
    	/* 如果该对象被用于序列化,可以保证对象在序列化前后保持一致 */
    	public Object readResolve() {
    		return getInstance();
    	}
    }

    其实说它完美,也不一定,如果在构造函数中抛出异常,实例将永远得不到创建,也会出错。所以说,十分完美的东西是没有的,我们只能根据实际情况,选择最适合自己应用场景的实现方法。也有人这样实现:因为我们只需要在创建类的时候进行同步,所以只要将创建和getInstance()分开,单独为创建加synchronized关键字,也是可以的:

    1. public class SingletonTest {  
    2.   
    3.     private static SingletonTest instance = null;  
    4.   
    5.     private SingletonTest() {  
    6.     }  
    7.   
    8.     private static synchronized void syncInit() {  
    9.         if (instance == null) {  
    10.             instance = new SingletonTest();  
    11.         }  
    12.     }  
    13.   
    14.     public static SingletonTest getInstance() {  
    15.         if (instance == null) {  
    16.             syncInit();  
    17.         }  
    18.         return instance;  
    19.     }  
    20. }  
    public class SingletonTest {
    
    	private static SingletonTest instance = null;
    
    	private SingletonTest() {
    	}
    
    	private static synchronized void syncInit() {
    		if (instance == null) {
    			instance = new SingletonTest();
    		}
    	}
    
    	public static SingletonTest getInstance() {
    		if (instance == null) {
    			syncInit();
    		}
    		return instance;
    	}
    }

    考虑性能的话,整个程序只需创建一次实例,所以性能也不会有什么影响。

    补充:采用"影子实例"的办法为单例对象的属性同步更新

    1. public class SingletonTest {  
    2.   
    3.     private static SingletonTest instance = null;  
    4.     private Vector properties = null;  
    5.   
    6.     public Vector getProperties() {  
    7.         return properties;  
    8.     }  
    9.   
    10.     private SingletonTest() {  
    11.     }  
    12.   
    13.     private static synchronized void syncInit() {  
    14.         if (instance == null) {  
    15.             instance = new SingletonTest();  
    16.         }  
    17.     }  
    18.   
    19.     public static SingletonTest getInstance() {  
    20.         if (instance == null) {  
    21.             syncInit();  
    22.         }  
    23.         return instance;  
    24.     }  
    25.   
    26.     public void updateProperties() {  
    27.         SingletonTest shadow = new SingletonTest();  
    28.         properties = shadow.getProperties();  
    29.     }  
    30. }  
    public class SingletonTest {
    
    	private static SingletonTest instance = null;
    	private Vector properties = null;
    
    	public Vector getProperties() {
    		return properties;
    	}
    
    	private SingletonTest() {
    	}
    
    	private static synchronized void syncInit() {
    		if (instance == null) {
    			instance = new SingletonTest();
    		}
    	}
    
    	public static SingletonTest getInstance() {
    		if (instance == null) {
    			syncInit();
    		}
    		return instance;
    	}
    
    	public void updateProperties() {
    		SingletonTest shadow = new SingletonTest();
    		properties = shadow.getProperties();
    	}
    }

    通过单例模式的学习告诉我们:

    1、单例模式理解起来简单,但是具体实现起来还是有一定的难度。

    2、synchronized关键字锁定的是对象,在用的时候,一定要在恰当的地方使用(注意需要使用锁的对象和过程,可能有的时候并不是整个对象及整个过程都需要锁)。

    到这儿,单例模式基本已经讲完了,结尾处,笔者突然想到另一个问题,就是采用类的静态方法,实现单例模式的效果,也是可行的,此处二者有什么不同?

    首先,静态类不能实现接口。(从类的角度说是可以的,但是那样就破坏了静态了。因为接口中不允许有static修饰的方法,所以即使实现了也是非静态的)

    其次,单例可以被延迟初始化,静态类一般在第一次加载是初始化。之所以延迟加载,是因为有些类比较庞大,所以延迟加载有助于提升性能。

    再次,单例类可以被继承,他的方法可以被覆写。但是静态类内部方法都是static,无法被覆写。

    最后一点,单例类比较灵活,毕竟从实现上只是一个普通的Java类,只要满足单例的基本需求,你可以在里面随心所欲的实现一些其它功能,但是静态类不行。从上面这些概括中,基本可以看出二者的区别,但是,从另一方面讲,我们上面最后实现的那个单例模式,内部就是用一个静态类来实现的,所以,二者有很大的关联,只是我们考虑问题的层面不同罢了。两种思想的结合,才能造就出完美的解决方案,就像HashMap采用数组+链表来实现一样,其实生活中很多事情都是这样,单用不同的方法来处理问题,总是有优点也有缺点,最完美的方法是,结合各个方法的优点,才能最好的解决问题!

    4、建造者模式(Builder)

    工厂类模式提供的是创建单个类的模式,而建造者模式则是将各种产品集中起来进行管理,用来创建复合对象,所谓复合对象就是指某个类具有不同的属性,其实建造者模式就是前面抽象工厂模式和最后的Test结合起来得到的。我们看一下代码:

    还和前面一样,一个Sender接口,两个实现类MailSender和SmsSender。最后,建造者类如下:

    1. public class Builder {  
    2.       
    3.     private List<Sender> list = new ArrayList<Sender>();  
    4.       
    5.     public void produceMailSender(int count){  
    6.         for(int i=0; i<count; i++){  
    7.             list.add(new MailSender());  
    8.         }  
    9.     }  
    10.       
    11.     public void produceSmsSender(int count){  
    12.         for(int i=0; i<count; i++){  
    13.             list.add(new SmsSender());  
    14.         }  
    15.     }  
    16. }  
    public class Builder {
    	
    	private List<Sender> list = new ArrayList<Sender>();
    	
    	public void produceMailSender(int count){
    		for(int i=0; i<count; i++){
    			list.add(new MailSender());
    		}
    	}
    	
    	public void produceSmsSender(int count){
    		for(int i=0; i<count; i++){
    			list.add(new SmsSender());
    		}
    	}
    }

    测试类:

    1. public class Test {  
    2.   
    3.     public static void main(String[] args) {  
    4.         Builder builder = new Builder();  
    5.         builder.produceMailSender(10);  
    6.     }  
    7. }  
    public class Test {
    
    	public static void main(String[] args) {
    		Builder builder = new Builder();
    		builder.produceMailSender(10);
    	}
    }

    从这点看出,建造者模式将很多功能集成到一个类里,这个类可以创造出比较复杂的东西。所以与工程模式的区别就是:工厂模式关注的是创建单个产品,而建造者模式则关注创建符合对象,多个部分。因此,是选择工厂模式还是建造者模式,依实际情况而定。

    5、原型模式(Prototype)

    原型模式虽然是创建型的模式,但是与工程模式没有关系,从名字即可看出,该模式的思想就是将一个对象作为原型,对其进行复制、克隆,产生一个和原对象类似的新对象。本小结会通过对象的复制,进行讲解。在Java中,复制对象是通过clone()实现的,先创建一个原型类:

    1. public class Prototype implements Cloneable {  
    2.   
    3.     public Object clone() throws CloneNotSupportedException {  
    4.         Prototype proto = (Prototype) super.clone();  
    5.         return proto;  
    6.     }  
    7. }  
    public class Prototype implements Cloneable {
    
    	public Object clone() throws CloneNotSupportedException {
    		Prototype proto = (Prototype) super.clone();
    		return proto;
    	}
    }

    很简单,一个原型类,只需要实现Cloneable接口,覆写clone方法,此处clone方法可以改成任意的名称,因为Cloneable接口是个空接口,你可以任意定义实现类的方法名,如cloneA或者cloneB,因为此处的重点是super.clone()这句话,super.clone()调用的是Object的clone()方法,而在Object类中,clone()是native的,具体怎么实现,我会在另一篇文章中,关于解读Java中本地方法的调用,此处不再深究。在这儿,我将结合对象的浅复制和深复制来说一下,首先需要了解对象深、浅复制的概念:

    浅复制:将一个对象复制后,基本数据类型的变量都会重新创建,而引用类型,指向的还是原对象所指向的。

    深复制:将一个对象复制后,不论是基本数据类型还有引用类型,都是重新创建的。简单来说,就是深复制进行了完全彻底的复制,而浅复制不彻底。

    此处,写一个深浅复制的例子:

    1. public class Prototype implements Cloneable, Serializable {  
    2.   
    3.     private static final long serialVersionUID = 1L;  
    4.     private String string;  
    5.   
    6.     private SerializableObject obj;  
    7.   
    8.     /* 浅复制 */  
    9.     public Object clone() throws CloneNotSupportedException {  
    10.         Prototype proto = (Prototype) super.clone();  
    11.         return proto;  
    12.     }  
    13.   
    14.     /* 深复制 */  
    15.     public Object deepClone() throws IOException, ClassNotFoundException {  
    16.   
    17.         /* 写入当前对象的二进制流 */  
    18.         ByteArrayOutputStream bos = new ByteArrayOutputStream();  
    19.         ObjectOutputStream oos = new ObjectOutputStream(bos);  
    20.         oos.writeObject(this);  
    21.   
    22.         /* 读出二进制流产生的新对象 */  
    23.         ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());  
    24.         ObjectInputStream ois = new ObjectInputStream(bis);  
    25.         return ois.readObject();  
    26.     }  
    27.   
    28.     public String getString() {  
    29.         return string;  
    30.     }  
    31.   
    32.     public void setString(String string) {  
    33.         this.string = string;  
    34.     }  
    35.   
    36.     public SerializableObject getObj() {  
    37.         return obj;  
    38.     }  
    39.   
    40.     public void setObj(SerializableObject obj) {  
    41.         this.obj = obj;  
    42.     }  
    43.   
    44. }  
    45.   
    46. class SerializableObject implements Serializable {  
    47.     private static final long serialVersionUID = 1L;  
    48. }  
    public class Prototype implements Cloneable, Serializable {
    
    	private static final long serialVersionUID = 1L;
    	private String string;
    
    	private SerializableObject obj;
    
    	/* 浅复制 */
    	public Object clone() throws CloneNotSupportedException {
    		Prototype proto = (Prototype) super.clone();
    		return proto;
    	}
    
    	/* 深复制 */
    	public Object deepClone() throws IOException, ClassNotFoundException {
    
    		/* 写入当前对象的二进制流 */
    		ByteArrayOutputStream bos = new ByteArrayOutputStream();
    		ObjectOutputStream oos = new ObjectOutputStream(bos);
    		oos.writeObject(this);
    
    		/* 读出二进制流产生的新对象 */
    		ByteArrayInputStream bis = new ByteArrayInputStream(bos.toByteArray());
    		ObjectInputStream ois = new ObjectInputStream(bis);
    		return ois.readObject();
    	}
    
    	public String getString() {
    		return string;
    	}
    
    	public void setString(String string) {
    		this.string = string;
    	}
    
    	public SerializableObject getObj() {
    		return obj;
    	}
    
    	public void setObj(SerializableObject obj) {
    		this.obj = obj;
    	}
    
    }
    
    class SerializableObject implements Serializable {
    	private static final long serialVersionUID = 1L;
    }

    要实现深复制,需要采用流的形式读入当前对象的二进制输入,再写出二进制数据对应的对象。

    我们接着讨论设计模式,上篇文章我讲完了5种创建型模式,这章开始,我将讲下7种结构型模式:适配器模式、装饰模式、代理模式、外观模式、桥接模式、组合模式、享元模式。其中对象的适配器模式是各种模式的起源,我们看下面的图:

    6、适配器模式(Adapter)

     适配器模式将某个类的接口转换成客户端期望的另一个接口表示,目的是消除由于接口不匹配所造成的类的兼容性问题。主要分为三类:类的适配器模式、对象的适配器模式、接口的适配器模式。首先,我们来看看类的适配器模式,先看类图:

    核心思想就是:有一个Source类,拥有一个方法,待适配,目标接口时Targetable,通过Adapter类,将Source的功能扩展到Targetable里,看代码:

    1. public class Source {  
    2.   
    3.     public void method1() {  
    4.         System.out.println("this is original method!");  
    5.     }  
    6. }  
    public class Source {
    
    	public void method1() {
    		System.out.println("this is original method!");
    	}
    }
    1. public interface Targetable {  
    2.   
    3.     /* 与原类中的方法相同 */  
    4.     public void method1();  
    5.   
    6.     /* 新类的方法 */  
    7.     public void method2();  
    8. }  
    public interface Targetable {
    
    	/* 与原类中的方法相同 */
    	public void method1();
    
    	/* 新类的方法 */
    	public void method2();
    }
    1. public class Adapter extends Source implements Targetable {  
    2.   
    3.     @Override  
    4.     public void method2() {  
    5.         System.out.println("this is the targetable method!");  
    6.     }  
    7. }  
    public class Adapter extends Source implements Targetable {
    
    	@Override
    	public void method2() {
    		System.out.println("this is the targetable method!");
    	}
    }

    Adapter类继承Source类,实现Targetable接口,下面是测试类:

    1. public class AdapterTest {  
    2.   
    3.     public static void main(String[] args) {  
    4.         Targetable target = new Adapter();  
    5.         target.method1();  
    6.         target.method2();  
    7.     }  
    8. }  
    public class AdapterTest {
    
    	public static void main(String[] args) {
    		Targetable target = new Adapter();
    		target.method1();
    		target.method2();
    	}
    }

    输出:

    this is original method! this is the targetable method!

    这样Targetable接口的实现类就具有了Source类的功能。

    对象的适配器模式

    基本思路和类的适配器模式相同,只是将Adapter类作修改,这次不继承Source类,而是持有Source类的实例,以达到解决兼容性的问题。看图:

    只需要修改Adapter类的源码即可:

    1. public class Wrapper implements Targetable {  
    2.   
    3.     private Source source;  
    4.       
    5.     public Wrapper(Source source){  
    6.         super();  
    7.         this.source = source;  
    8.     }  
    9.     @Override  
    10.     public void method2() {  
    11.         System.out.println("this is the targetable method!");  
    12.     }  
    13.   
    14.     @Override  
    15.     public void method1() {  
    16.         source.method1();  
    17.     }  
    18. }  
    public class Wrapper implements Targetable {
    
    	private Source source;
    	
    	public Wrapper(Source source){
    		super();
    		this.source = source;
    	}
    	@Override
    	public void method2() {
    		System.out.println("this is the targetable method!");
    	}
    
    	@Override
    	public void method1() {
    		source.method1();
    	}
    }

    测试类:

    1. public class AdapterTest {  
    2.   
    3.     public static void main(String[] args) {  
    4.         Source source = new Source();  
    5.         Targetable target = new Wrapper(source);  
    6.         target.method1();  
    7.         target.method2();  
    8.     }  
    9. }  
    public class AdapterTest {
    
    	public static void main(String[] args) {
    		Source source = new Source();
    		Targetable target = new Wrapper(source);
    		target.method1();
    		target.method2();
    	}
    }

    输出与第一种一样,只是适配的方法不同而已。

    第三种适配器模式是接口的适配器模式,接口的适配器是这样的:有时我们写的一个接口中有多个抽象方法,当我们写该接口的实现类时,必须实现该接口的所有方法,这明显有时比较浪费,因为并不是所有的方法都是我们需要的,有时只需要某一些,此处为了解决这个问题,我们引入了接口的适配器模式,借助于一个抽象类,该抽象类实现了该接口,实现了所有的方法,而我们不和原始的接口打交道,只和该抽象类取得联系,所以我们写一个类,继承该抽象类,重写我们需要的方法就行。看一下类图:

    这个很好理解,在实际开发中,我们也常会遇到这种接口中定义了太多的方法,以致于有时我们在一些实现类中并不是都需要。看代码:

    1. public interface Sourceable {  
    2.       
    3.     public void method1();  
    4.     public void method2();  
    5. }  
    public interface Sourceable {
    	
    	public void method1();
    	public void method2();
    }

    抽象类Wrapper2:

    1. public abstract class Wrapper2 implements Sourceable{  
    2.       
    3.     public void method1(){}  
    4.     public void method2(){}  
    5. }  
    public abstract class Wrapper2 implements Sourceable{
    	
    	public void method1(){}
    	public void method2(){}
    }
    1. public class SourceSub1 extends Wrapper2 {  
    2.     public void method1(){  
    3.         System.out.println("the sourceable interface's first Sub1!");  
    4.     }  
    5. }  
    public class SourceSub1 extends Wrapper2 {
    	public void method1(){
    		System.out.println("the sourceable interface's first Sub1!");
    	}
    }
    1. public class SourceSub2 extends Wrapper2 {  
    2.     public void method2(){  
    3.         System.out.println("the sourceable interface's second Sub2!");  
    4.     }  
    5. }  
    public class SourceSub2 extends Wrapper2 {
    	public void method2(){
    		System.out.println("the sourceable interface's second Sub2!");
    	}
    }
    1. public class WrapperTest {  
    2.   
    3.     public static void main(String[] args) {  
    4.         Sourceable source1 = new SourceSub1();  
    5.         Sourceable source2 = new SourceSub2();  
    6.           
    7.         source1.method1();  
    8.         source1.method2();  
    9.         source2.method1();  
    10.         source2.method2();  
    11.     }  
    12. }  
    public class WrapperTest {
    
    	public static void main(String[] args) {
    		Sourceable source1 = new SourceSub1();
    		Sourceable source2 = new SourceSub2();
    		
    		source1.method1();
    		source1.method2();
    		source2.method1();
    		source2.method2();
    	}
    }

    测试输出:

    the sourceable interface's first Sub1! the sourceable interface's second Sub2!

    达到了我们的效果!

     讲了这么多,总结一下三种适配器模式的应用场景:

    类的适配器模式:当希望将一个类转换成满足另一个新接口的类时,可以使用类的适配器模式,创建一个新类,继承原有的类,实现新的接口即可。

    对象的适配器模式:当希望将一个对象转换成满足另一个新接口的对象时,可以创建一个Wrapper类,持有原类的一个实例,在Wrapper类的方法中,调用实例的方法就行。

    接口的适配器模式:当不希望实现一个接口中所有的方法时,可以创建一个抽象类Wrapper,实现所有方法,我们写别的类的时候,继承抽象类即可。

    7、装饰模式(Decorator)

    顾名思义,装饰模式就是给一个对象增加一些新的功能,而且是动态的,要求装饰对象和被装饰对象实现同一个接口,装饰对象持有被装饰对象的实例,关系图如下:

    Source类是被装饰类,Decorator类是一个装饰类,可以为Source类动态的添加一些功能,代码如下:

    1. public interface Sourceable {  
    2.     public void method();  
    3. }  
    public interface Sourceable {
    	public void method();
    }
    1. public class Source implements Sourceable {  
    2.   
    3.     @Override  
    4.     public void method() {  
    5.         System.out.println("the original method!");  
    6.     }  
    7. }  
    public class Source implements Sourceable {
    
    	@Override
    	public void method() {
    		System.out.println("the original method!");
    	}
    }
    1. public class Decorator implements Sourceable {  
    2.   
    3.     private Sourceable source;  
    4.       
    5.     public Decorator(Sourceable source){  
    6.         super();  
    7.         this.source = source;  
    8.     }  
    9.     @Override  
    10.     public void method() {  
    11.         System.out.println("before decorator!");  
    12.         source.method();  
    13.         System.out.println("after decorator!");  
    14.     }  
    15. }  
    public class Decorator implements Sourceable {
    
    	private Sourceable source;
    	
    	public Decorator(Sourceable source){
    		super();
    		this.source = source;
    	}
    	@Override
    	public void method() {
    		System.out.println("before decorator!");
    		source.method();
    		System.out.println("after decorator!");
    	}
    }

    测试类:

    1. public class DecoratorTest {  
    2.   
    3.     public static void main(String[] args) {  
    4.         Sourceable source = new Source();  
    5.         Sourceable obj = new Decorator(source);  
    6.         obj.method();  
    7.     }  
    8. }  
    public class DecoratorTest {
    
    	public static void main(String[] args) {
    		Sourceable source = new Source();
    		Sourceable obj = new Decorator(source);
    		obj.method();
    	}
    }

    输出:

    before decorator! the original method! after decorator!

    装饰器模式的应用场景:

    1、需要扩展一个类的功能。

    2、动态的为一个对象增加功能,而且还能动态撤销。(继承不能做到这一点,继承的功能是静态的,不能动态增删。)

    缺点:产生过多相似的对象,不易排错!

    8、代理模式(Proxy)

    其实每个模式名称就表明了该模式的作用,代理模式就是多一个代理类出来,替原对象进行一些操作,比如我们在租房子的时候回去找中介,为什么呢?因为你对该地区房屋的信息掌握的不够全面,希望找一个更熟悉的人去帮你做,此处的代理就是这个意思。再如我们有的时候打官司,我们需要请律师,因为律师在法律方面有专长,可以替我们进行操作,表达我们的想法。先来看看关系图:

    根据上文的阐述,代理模式就比较容易的理解了,我们看下代码:

    1. public interface Sourceable {  
    2.     public void method();  
    3. }  
    public interface Sourceable {
    	public void method();
    }
    1. public class Source implements Sourceable {  
    2.   
    3.     @Override  
    4.     public void method() {  
    5.         System.out.println("the original method!");  
    6.     }  
    7. }  
    public class Source implements Sourceable {
    
    	@Override
    	public void method() {
    		System.out.println("the original method!");
    	}
    }
    1. public class Proxy implements Sourceable {  
    2.   
    3.     private Source source;  
    4.     public Proxy(){  
    5.         super();  
    6.         this.source = new Source();  
    7.     }  
    8.     @Override  
    9.     public void method() {  
    10.         before();  
    11.         source.method();  
    12.         atfer();  
    13.     }  
    14.     private void atfer() {  
    15.         System.out.println("after proxy!");  
    16.     }  
    17.     private void before() {  
    18.         System.out.println("before proxy!");  
    19.     }  
    20. }  
    public class Proxy implements Sourceable {
    
    	private Source source;
    	public Proxy(){
    		super();
    		this.source = new Source();
    	}
    	@Override
    	public void method() {
    		before();
    		source.method();
    		atfer();
    	}
    	private void atfer() {
    		System.out.println("after proxy!");
    	}
    	private void before() {
    		System.out.println("before proxy!");
    	}
    }

    测试类:

    1. public class ProxyTest {  
    2.   
    3.     public static void main(String[] args) {  
    4.         Sourceable source = new Proxy();  
    5.         source.method();  
    6.     }  
    7.   
    8. }  
    public class ProxyTest {
    
    	public static void main(String[] args) {
    		Sourceable source = new Proxy();
    		source.method();
    	}
    
    }

    输出:

    before proxy! the original method! after proxy!

    代理模式的应用场景:

    如果已有的方法在使用的时候需要对原有的方法进行改进,此时有两种办法:

    1、修改原有的方法来适应。这样违反了“对扩展开放,对修改关闭”的原则。

    2、就是采用一个代理类调用原有的方法,且对产生的结果进行控制。这种方法就是代理模式。

    使用代理模式,可以将功能划分的更加清晰,有助于后期维护!

    9、外观模式(Facade)

    外观模式是为了解决类与类之家的依赖关系的,像spring一样,可以将类和类之间的关系配置到配置文件中,而外观模式就是将他们的关系放在一个Facade类中,降低了类类之间的耦合度,该模式中没有涉及到接口,看下类图:(我们以一个计算机的启动过程为例)

    我们先看下实现类:

    1. public class CPU {  
    2.       
    3.     public void startup(){  
    4.         System.out.println("cpu startup!");  
    5.     }  
    6.       
    7.     public void shutdown(){  
    8.         System.out.println("cpu shutdown!");  
    9.     }  
    10. }  
    public class CPU {
    	
    	public void startup(){
    		System.out.println("cpu startup!");
    	}
    	
    	public void shutdown(){
    		System.out.println("cpu shutdown!");
    	}
    }
    1. public class Memory {  
    2.       
    3.     public void startup(){  
    4.         System.out.println("memory startup!");  
    5.     }  
    6.       
    7.     public void shutdown(){  
    8.         System.out.println("memory shutdown!");  
    9.     }  
    10. }  
    public class Memory {
    	
    	public void startup(){
    		System.out.println("memory startup!");
    	}
    	
    	public void shutdown(){
    		System.out.println("memory shutdown!");
    	}
    }
    1. public class Disk {  
    2.       
    3.     public void startup(){  
    4.         System.out.println("disk startup!");  
    5.     }  
    6.       
    7.     public void shutdown(){  
    8.         System.out.println("disk shutdown!");  
    9.     }  
    10. }  
    public class Disk {
    	
    	public void startup(){
    		System.out.println("disk startup!");
    	}
    	
    	public void shutdown(){
    		System.out.println("disk shutdown!");
    	}
    }
    1. public class Computer {  
    2.     private CPU cpu;  
    3.     private Memory memory;  
    4.     private Disk disk;  
    5.       
    6.     public Computer(){  
    7.         cpu = new CPU();  
    8.         memory = new Memory();  
    9.         disk = new Disk();  
    10.     }  
    11.       
    12.     public void startup(){  
    13.         System.out.println("start the computer!");  
    14.         cpu.startup();  
    15.         memory.startup();  
    16.         disk.startup();  
    17.         System.out.println("start computer finished!");  
    18.     }  
    19.       
    20.     public void shutdown(){  
    21.         System.out.println("begin to close the computer!");  
    22.         cpu.shutdown();  
    23.         memory.shutdown();  
    24.         disk.shutdown();  
    25.         System.out.println("computer closed!");  
    26.     }  
    27. }  
    public class Computer {
    	private CPU cpu;
    	private Memory memory;
    	private Disk disk;
    	
    	public Computer(){
    		cpu = new CPU();
    		memory = new Memory();
    		disk = new Disk();
    	}
    	
    	public void startup(){
    		System.out.println("start the computer!");
    		cpu.startup();
    		memory.startup();
    		disk.startup();
    		System.out.println("start computer finished!");
    	}
    	
    	public void shutdown(){
    		System.out.println("begin to close the computer!");
    		cpu.shutdown();
    		memory.shutdown();
    		disk.shutdown();
    		System.out.println("computer closed!");
    	}
    }
    

    User类如下:

    1. public class User {  
    2.   
    3.     public static void main(String[] args) {  
    4.         Computer computer = new Computer();  
    5.         computer.startup();  
    6.         computer.shutdown();  
    7.     }  
    8. }  
    public class User {
    
    	public static void main(String[] args) {
    		Computer computer = new Computer();
    		computer.startup();
    		computer.shutdown();
    	}
    }

    输出:

    start the computer! cpu startup! memory startup! disk startup! start computer finished! begin to close the computer! cpu shutdown! memory shutdown! disk shutdown! computer closed!

    如果我们没有Computer类,那么,CPU、Memory、Disk他们之间将会相互持有实例,产生关系,这样会造成严重的依赖,修改一个类,可能会带来其他类的修改,这不是我们想要看到的,有了Computer类,他们之间的关系被放在了Computer类里,这样就起到了解耦的作用,这,就是外观模式!

    10、桥接模式(Bridge)

    桥接模式就是把事物和其具体实现分开,使他们可以各自独立的变化。桥接的用意是:将抽象化与实现化解耦,使得二者可以独立变化,像我们常用的JDBC桥DriverManager一样,JDBC进行连接数据库的时候,在各个数据库之间进行切换,基本不需要动太多的代码,甚至丝毫不用动,原因就是JDBC提供统一接口,每个数据库提供各自的实现,用一个叫做数据库驱动的程序来桥接就行了。我们来看看关系图:

    实现代码:

    先定义接口:

    1. public interface Sourceable {  
    2.     public void method();  
    3. }  
    public interface Sourceable {
    	public void method();
    }

    分别定义两个实现类:

    1. public class SourceSub1 implements Sourceable {  
    2.   
    3.     @Override  
    4.     public void method() {  
    5.         System.out.println("this is the first sub!");  
    6.     }  
    7. }  
    public class SourceSub1 implements Sourceable {
    
    	@Override
    	public void method() {
    		System.out.println("this is the first sub!");
    	}
    }
    1. public class SourceSub2 implements Sourceable {  
    2.   
    3.     @Override  
    4.     public void method() {  
    5.         System.out.println("this is the second sub!");  
    6.     }  
    7. }  
    public class SourceSub2 implements Sourceable {
    
    	@Override
    	public void method() {
    		System.out.println("this is the second sub!");
    	}
    }

    定义一个桥,持有Sourceable的一个实例:

    1. public abstract class Bridge {  
    2.     private Sourceable source;  
    3.   
    4.     public void method(){  
    5.         source.method();  
    6.     }  
    7.       
    8.     public Sourceable getSource() {  
    9.         return source;  
    10.     }  
    11.   
    12.     public void setSource(Sourceable source) {  
    13.         this.source = source;  
    14.     }  
    15. }  
    public abstract class Bridge {
    	private Sourceable source;
    
    	public void method(){
    		source.method();
    	}
    	
    	public Sourceable getSource() {
    		return source;
    	}
    
    	public void setSource(Sourceable source) {
    		this.source = source;
    	}
    }
    1. public class MyBridge extends Bridge {  
    2.     public void method(){  
    3.         getSource().method();  
    4.     }  
    5. }  
    public class MyBridge extends Bridge {
    	public void method(){
    		getSource().method();
    	}
    }

    测试类:

    1. public class BridgeTest {  
    2.       
    3.     public static void main(String[] args) {  
    4.           
    5.         Bridge bridge = new MyBridge();  
    6.           
    7.         /*调用第一个对象*/  
    8.         Sourceable source1 = new SourceSub1();  
    9.         bridge.setSource(source1);  
    10.         bridge.method();  
    11.           
    12.         /*调用第二个对象*/  
    13.         Sourceable source2 = new SourceSub2();  
    14.         bridge.setSource(source2);  
    15.         bridge.method();  
    16.     }  
    17. }  
    public class BridgeTest {
    	
    	public static void main(String[] args) {
    		
    		Bridge bridge = new MyBridge();
    		
    		/*调用第一个对象*/
    		Sourceable source1 = new SourceSub1();
    		bridge.setSource(source1);
    		bridge.method();
    		
    		/*调用第二个对象*/
    		Sourceable source2 = new SourceSub2();
    		bridge.setSource(source2);
    		bridge.method();
    	}
    }

    output:

    this is the first sub! this is the second sub!

    这样,就通过对Bridge类的调用,实现了对接口Sourceable的实现类SourceSub1和SourceSub2的调用。接下来我再画个图,大家就应该明白了,因为这个图是我们JDBC连接的原理,有数据库学习基础的,一结合就都懂了。

    11、组合模式(Composite)

    组合模式有时又叫部分-整体模式在处理类似树形结构的问题时比较方便,看看关系图:

    直接来看代码:

    1. public class TreeNode {  
    2.       
    3.     private String name;  
    4.     private TreeNode parent;  
    5.     private Vector<TreeNode> children = new Vector<TreeNode>();  
    6.       
    7.     public TreeNode(String name){  
    8.         this.name = name;  
    9.     }  
    10.   
    11.     public String getName() {  
    12.         return name;  
    13.     }  
    14.   
    15.     public void setName(String name) {  
    16.         this.name = name;  
    17.     }  
    18.   
    19.     public TreeNode getParent() {  
    20.         return parent;  
    21.     }  
    22.   
    23.     public void setParent(TreeNode parent) {  
    24.         this.parent = parent;  
    25.     }  
    26.       
    27.     //添加孩子节点  
    28.     public void add(TreeNode node){  
    29.         children.add(node);  
    30.     }  
    31.       
    32.     //删除孩子节点  
    33.     public void remove(TreeNode node){  
    34.         children.remove(node);  
    35.     }  
    36.       
    37.     //取得孩子节点  
    38.     public Enumeration<TreeNode> getChildren(){  
    39.         return children.elements();  
    40.     }  
    41. }  
    public class TreeNode {
    	
    	private String name;
    	private TreeNode parent;
    	private Vector<TreeNode> children = new Vector<TreeNode>();
    	
    	public TreeNode(String name){
    		this.name = name;
    	}
    
    	public String getName() {
    		return name;
    	}
    
    	public void setName(String name) {
    		this.name = name;
    	}
    
    	public TreeNode getParent() {
    		return parent;
    	}
    
    	public void setParent(TreeNode parent) {
    		this.parent = parent;
    	}
    	
    	//添加孩子节点
    	public void add(TreeNode node){
    		children.add(node);
    	}
    	
    	//删除孩子节点
    	public void remove(TreeNode node){
    		children.remove(node);
    	}
    	
    	//取得孩子节点
    	public Enumeration<TreeNode> getChildren(){
    		return children.elements();
    	}
    }
    1. public class Tree {  
    2.   
    3.     TreeNode root = null;  
    4.   
    5.     public Tree(String name) {  
    6.         root = new TreeNode(name);  
    7.     }  
    8.   
    9.     public static void main(String[] args) {  
    10.         Tree tree = new Tree("A");  
    11.         TreeNode nodeB = new TreeNode("B");  
    12.         TreeNode nodeC = new TreeNode("C");  
    13.           
    14.         nodeB.add(nodeC);  
    15.         tree.root.add(nodeB);  
    16.         System.out.println("build the tree finished!");  
    17.     }  
    18. }  
    public class Tree {
    
    	TreeNode root = null;
    
    	public Tree(String name) {
    		root = new TreeNode(name);
    	}
    
    	public static void main(String[] args) {
    		Tree tree = new Tree("A");
    		TreeNode nodeB = new TreeNode("B");
    		TreeNode nodeC = new TreeNode("C");
    		
    		nodeB.add(nodeC);
    		tree.root.add(nodeB);
    		System.out.println("build the tree finished!");
    	}
    }

    使用场景:将多个对象组合在一起进行操作,常用于表示树形结构中,例如二叉树,数等。

    12、享元模式(Flyweight)

    享元模式的主要目的是实现对象的共享,即共享池,当系统中对象多的时候可以减少内存的开销,通常与工厂模式一起使用。

    FlyWeightFactory负责创建和管理享元单元,当一个客户端请求时,工厂需要检查当前对象池中是否有符合条件的对象,如果有,就返回已经存在的对象,如果没有,则创建一个新对象,FlyWeight是超类。一提到共享池,我们很容易联想到Java里面的JDBC连接池,想想每个连接的特点,我们不难总结出:适用于作共享的一些个对象,他们有一些共有的属性,就拿数据库连接池来说,url、driverClassName、username、password及dbname,这些属性对于每个连接来说都是一样的,所以就适合用享元模式来处理,建一个工厂类,将上述类似属性作为内部数据,其它的作为外部数据,在方法调用时,当做参数传进来,这样就节省了空间,减少了实例的数量。

    看个例子:

    看下数据库连接池的代码:

    1. public class ConnectionPool {  
    2.       
    3.     private Vector<Connection> pool;  
    4.       
    5.     /*公有属性*/  
    6.     private String url = "jdbc:mysql://localhost:3306/test";  
    7.     private String username = "root";  
    8.     private String password = "root";  
    9.     private String driverClassName = "com.mysql.jdbc.Driver";  
    10.   
    11.     private int poolSize = 100;  
    12.     private static ConnectionPool instance = null;  
    13.     Connection conn = null;  
    14.   
    15.     /*构造方法,做一些初始化工作*/  
    16.     private ConnectionPool() {  
    17.         pool = new Vector<Connection>(poolSize);  
    18.   
    19.         for (int i = 0; i < poolSize; i++) {  
    20.             try {  
    21.                 Class.forName(driverClassName);  
    22.                 conn = DriverManager.getConnection(url, username, password);  
    23.                 pool.add(conn);  
    24.             } catch (ClassNotFoundException e) {  
    25.                 e.printStackTrace();  
    26.             } catch (SQLException e) {  
    27.                 e.printStackTrace();  
    28.             }  
    29.         }  
    30.     }  
    31.   
    32.     /* 返回连接到连接池 */  
    33.     public synchronized void release() {  
    34.         pool.add(conn);  
    35.     }  
    36.   
    37.     /* 返回连接池中的一个数据库连接 */  
    38.     public synchronized Connection getConnection() {  
    39.         if (pool.size() > 0) {  
    40.             Connection conn = pool.get(0);  
    41.             pool.remove(conn);  
    42.             return conn;  
    43.         } else {  
    44.             return null;  
    45.         }  
    46.     }  
    47. }  
    48. 先来张图,看看这11中模式的关系:

      第一类:通过父类与子类的关系进行实现。第二类:两个类之间。第三类:类的状态。第四类:通过中间类

      13、策略模式(strategy)

      策略模式定义了一系列算法,并将每个算法封装起来,使他们可以相互替换,且算法的变化不会影响到使用算法的客户。需要设计一个接口,为一系列实现类提供统一的方法,多个实现类实现该接口,设计一个抽象类(可有可无,属于辅助类),提供辅助函数,关系图如下:

      图中ICalculator提供同意的方法, AbstractCalculator是辅助类,提供辅助方法,接下来,依次实现下每个类:

      首先统一接口:

      1. public interface ICalculator {  
      2.     public int calculate(String exp);  
      3. }  
      public interface ICalculator {
      	public int calculate(String exp);
      }

      辅助类:

      1. public abstract class AbstractCalculator {  
      2.       
      3.     public int[] split(String exp,String opt){  
      4.         String array[] = exp.split(opt);  
      5.         int arrayInt[] = new int[2];  
      6.         arrayInt[0] = Integer.parseInt(array[0]);  
      7.         arrayInt[1] = Integer.parseInt(array[1]);  
      8.         return arrayInt;  
      9.     }  
      10. }  
      public abstract class AbstractCalculator {
      	
      	public int[] split(String exp,String opt){
      		String array[] = exp.split(opt);
      		int arrayInt[] = new int[2];
      		arrayInt[0] = Integer.parseInt(array[0]);
      		arrayInt[1] = Integer.parseInt(array[1]);
      		return arrayInt;
      	}
      }

      三个实现类:

      1. public class Plus extends AbstractCalculator implements ICalculator {  
      2.   
      3.     @Override  
      4.     public int calculate(String exp) {  
      5.         int arrayInt[] = split(exp,"\+");  
      6.         return arrayInt[0]+arrayInt[1];  
      7.     }  
      8. }  
      public class Plus extends AbstractCalculator implements ICalculator {
      
      	@Override
      	public int calculate(String exp) {
      		int arrayInt[] = split(exp,"\+");
      		return arrayInt[0]+arrayInt[1];
      	}
      }
      1. public class Minus extends AbstractCalculator implements ICalculator {  
      2.   
      3.     @Override  
      4.     public int calculate(String exp) {  
      5.         int arrayInt[] = split(exp,"-");  
      6.         return arrayInt[0]-arrayInt[1];  
      7.     }  
      8.   
      9. }  
      public class Minus extends AbstractCalculator implements ICalculator {
      
      	@Override
      	public int calculate(String exp) {
      		int arrayInt[] = split(exp,"-");
      		return arrayInt[0]-arrayInt[1];
      	}
      
      }
      1. public class Multiply extends AbstractCalculator implements ICalculator {  
      2.   
      3.     @Override  
      4.     public int calculate(String exp) {  
      5.         int arrayInt[] = split(exp,"\*");  
      6.         return arrayInt[0]*arrayInt[1];  
      7.     }  
      8. }  
      public class Multiply extends AbstractCalculator implements ICalculator {
      
      	@Override
      	public int calculate(String exp) {
      		int arrayInt[] = split(exp,"\*");
      		return arrayInt[0]*arrayInt[1];
      	}
      }

      简单的测试类:

      1. public class StrategyTest {  
      2.   
      3.     public static void main(String[] args) {  
      4.         String exp = "2+8";  
      5.         ICalculator cal = new Plus();  
      6.         int result = cal.calculate(exp);  
      7.         System.out.println(result);  
      8.     }  
      9. }  
      public class StrategyTest {
      
      	public static void main(String[] args) {
      		String exp = "2+8";
      		ICalculator cal = new Plus();
      		int result = cal.calculate(exp);
      		System.out.println(result);
      	}
      }

      输出:10

      策略模式的决定权在用户,系统本身提供不同算法的实现,新增或者删除算法,对各种算法做封装。因此,策略模式多用在算法决策系统中,外部用户只需要决定用哪个算法即可。

      14、模板方法模式(Template Method)

      解释一下模板方法模式,就是指:一个抽象类中,有一个主方法,再定义1...n个方法,可以是抽象的,也可以是实际的方法,定义一个类,继承该抽象类,重写抽象方法,通过调用抽象类,实现对子类的调用,先看个关系图:

      就是在AbstractCalculator类中定义一个主方法calculate,calculate()调用spilt()等,Plus和Minus分别继承AbstractCalculator类,通过对AbstractCalculator的调用实现对子类的调用,看下面的例子:

      1. public abstract class AbstractCalculator {  
      2.       
      3.     /*主方法,实现对本类其它方法的调用*/  
      4.     public final int calculate(String exp,String opt){  
      5.         int array[] = split(exp,opt);  
      6.         return calculate(array[0],array[1]);  
      7.     }  
      8.       
      9.     /*被子类重写的方法*/  
      10.     abstract public int calculate(int num1,int num2);  
      11.       
      12.     public int[] split(String exp,String opt){  
      13.         String array[] = exp.split(opt);  
      14.         int arrayInt[] = new int[2];  
      15.         arrayInt[0] = Integer.parseInt(array[0]);  
      16.         arrayInt[1] = Integer.parseInt(array[1]);  
      17.         return arrayInt;  
      18.     }  
      19. }  
      public abstract class AbstractCalculator {
      	
      	/*主方法,实现对本类其它方法的调用*/
      	public final int calculate(String exp,String opt){
      		int array[] = split(exp,opt);
      		return calculate(array[0],array[1]);
      	}
      	
      	/*被子类重写的方法*/
      	abstract public int calculate(int num1,int num2);
      	
      	public int[] split(String exp,String opt){
      		String array[] = exp.split(opt);
      		int arrayInt[] = new int[2];
      		arrayInt[0] = Integer.parseInt(array[0]);
      		arrayInt[1] = Integer.parseInt(array[1]);
      		return arrayInt;
      	}
      }
      1. public class Plus extends AbstractCalculator {  
      2.   
      3.     @Override  
      4.     public int calculate(int num1,int num2) {  
      5.         return num1 + num2;  
      6.     }  
      7. }  
      public class Plus extends AbstractCalculator {
      
      	@Override
      	public int calculate(int num1,int num2) {
      		return num1 + num2;
      	}
      }

      测试类:

      1. public class StrategyTest {  
      2.   
      3.     public static void main(String[] args) {  
      4.         String exp = "8+8";  
      5.         AbstractCalculator cal = new Plus();  
      6.         int result = cal.calculate(exp, "\+");  
      7.         System.out.println(result);  
      8.     }  
      9. }  
      public class StrategyTest {
      
      	public static void main(String[] args) {
      		String exp = "8+8";
      		AbstractCalculator cal = new Plus();
      		int result = cal.calculate(exp, "\+");
      		System.out.println(result);
      	}
      }

      我跟踪下这个小程序的执行过程:首先将exp和"\+"做参数,调用AbstractCalculator类里的calculate(String,String)方法,在calculate(String,String)里调用同类的split(),之后再调用calculate(int ,int)方法,从这个方法进入到子类中,执行完return num1 + num2后,将值返回到AbstractCalculator类,赋给result,打印出来。正好验证了我们开头的思路。

      15、观察者模式(Observer)

      包括这个模式在内的接下来的四个模式,都是类和类之间的关系,不涉及到继承,学的时候应该 记得归纳,记得本文最开始的那个图。观察者模式很好理解,类似于邮件订阅和RSS订阅,当我们浏览一些博客或wiki时,经常会看到RSS图标,就这的意思是,当你订阅了该文章,如果后续有更新,会及时通知你。其实,简单来讲就一句话:当一个对象变化时,其它依赖该对象的对象都会收到通知,并且随着变化!对象之间是一种一对多的关系。先来看看关系图:

      我解释下这些类的作用:MySubject类就是我们的主对象,Observer1和Observer2是依赖于MySubject的对象,当MySubject变化时,Observer1和Observer2必然变化。AbstractSubject类中定义着需要监控的对象列表,可以对其进行修改:增加或删除被监控对象,且当MySubject变化时,负责通知在列表内存在的对象。我们看实现代码:

      一个Observer接口:

      1. public interface Observer {  
      2.     public void update();  
      3. }  
      public interface Observer {
      	public void update();
      }

      两个实现类:

      1. public class Observer1 implements Observer {  
      2.   
      3.     @Override  
      4.     public void update() {  
      5.         System.out.println("observer1 has received!");  
      6.     }  
      7. }  
      public class Observer1 implements Observer {
      
      	@Override
      	public void update() {
      		System.out.println("observer1 has received!");
      	}
      }
      1. public class Observer2 implements Observer {  
      2.   
      3.     @Override  
      4.     public void update() {  
      5.         System.out.println("observer2 has received!");  
      6.     }  
      7.   
      8. }  
      public class Observer2 implements Observer {
      
      	@Override
      	public void update() {
      		System.out.println("observer2 has received!");
      	}
      
      }

      Subject接口及实现类:

      1. public interface Subject {  
      2.       
      3.     /*增加观察者*/  
      4.     public void add(Observer observer);  
      5.       
      6.     /*删除观察者*/  
      7.     public void del(Observer observer);  
      8.       
      9.     /*通知所有的观察者*/  
      10.     public void notifyObservers();  
      11.       
      12.     /*自身的操作*/  
      13.     public void operation();  
      14. }  
      public interface Subject {
      	
      	/*增加观察者*/
      	public void add(Observer observer);
      	
      	/*删除观察者*/
      	public void del(Observer observer);
      	
      	/*通知所有的观察者*/
      	public void notifyObservers();
      	
      	/*自身的操作*/
      	public void operation();
      }
      1. public abstract class AbstractSubject implements Subject {  
      2.   
      3.     private Vector<Observer> vector = new Vector<Observer>();  
      4.     @Override  
      5.     public void add(Observer observer) {  
      6.         vector.add(observer);  
      7.     }  
      8.   
      9.     @Override  
      10.     public void del(Observer observer) {  
      11.         vector.remove(observer);  
      12.     }  
      13.   
      14.     @Override  
      15.     public void notifyObservers() {  
      16.         Enumeration<Observer> enumo = vector.elements();  
      17.         while(enumo.hasMoreElements()){  
      18.             enumo.nextElement().update();  
      19.         }  
      20.     }  
      21. }  
      public abstract class AbstractSubject implements Subject {
      
      	private Vector<Observer> vector = new Vector<Observer>();
      	@Override
      	public void add(Observer observer) {
      		vector.add(observer);
      	}
      
      	@Override
      	public void del(Observer observer) {
      		vector.remove(observer);
      	}
      
      	@Override
      	public void notifyObservers() {
      		Enumeration<Observer> enumo = vector.elements();
      		while(enumo.hasMoreElements()){
      			enumo.nextElement().update();
      		}
      	}
      }
      1. public class MySubject extends AbstractSubject {  
      2.   
      3.     @Override  
      4.     public void operation() {  
      5.         System.out.println("update self!");  
      6.         notifyObservers();  
      7.     }  
      8.   
      9. }  
      public class MySubject extends AbstractSubject {
      
      	@Override
      	public void operation() {
      		System.out.println("update self!");
      		notifyObservers();
      	}
      
      }

      测试类:

      1. public class ObserverTest {  
      2.   
      3.     public static void main(String[] args) {  
      4.         Subject sub = new MySubject();  
      5.         sub.add(new Observer1());  
      6.         sub.add(new Observer2());  
      7.           
      8.         sub.operation();  
      9.     }  
      10.   
      11. }  
      public class ObserverTest {
      
      	public static void main(String[] args) {
      		Subject sub = new MySubject();
      		sub.add(new Observer1());
      		sub.add(new Observer2());
      		
      		sub.operation();
      	}
      
      }

      输出:

      update self! observer1 has received! observer2 has received!

       这些东西,其实不难,只是有些抽象,不太容易整体理解,建议读者:根据关系图,新建项目,自己写代码(或者参考我的代码),按照总体思路走一遍,这样才能体会它的思想,理解起来容易!

      欢迎广大读者随时指正,一起讨论,一起进步!

      有问题,联系:egg

      email:xtfggef@gmail.com      微博:http://weibo.com/xtfggef

      16、迭代子模式(Iterator)

      顾名思义,迭代器模式就是顺序访问聚集中的对象,一般来说,集合中非常常见,如果对集合类比较熟悉的话,理解本模式会十分轻松。这句话包含两层意思:一是需要遍历的对象,即聚集对象,二是迭代器对象,用于对聚集对象进行遍历访问。我们看下关系图:

       

      这个思路和我们常用的一模一样,MyCollection中定义了集合的一些操作,MyIterator中定义了一系列迭代操作,且持有Collection实例,我们来看看实现代码:

      两个接口:

      1. public interface Collection {  
      2.       
      3.     public Iterator iterator();  
      4.       
      5.     /*取得集合元素*/  
      6.     public Object get(int i);  
      7.       
      8.     /*取得集合大小*/  
      9.     public int size();  
      10. }  
      public interface Collection {
      	
      	public Iterator iterator();
      	
      	/*取得集合元素*/
      	public Object get(int i);
      	
      	/*取得集合大小*/
      	public int size();
      }
      1. public interface Iterator {  
      2.     //前移  
      3.     public Object previous();  
      4.       
      5.     //后移  
      6.     public Object next();  
      7.     public boolean hasNext();  
      8.       
      9.     //取得第一个元素  
      10.     public Object first();  
      11. }  
      public interface Iterator {
      	//前移
      	public Object previous();
      	
      	//后移
      	public Object next();
      	public boolean hasNext();
      	
      	//取得第一个元素
      	public Object first();
      }

      两个实现:

      1. public class MyCollection implements Collection {  
      2.   
      3.     public String string[] = {"A","B","C","D","E"};  
      4.     @Override  
      5.     public Iterator iterator() {  
      6.         return new MyIterator(this);  
      7.     }  
      8.   
      9.     @Override  
      10.     public Object get(int i) {  
      11.         return string[i];  
      12.     }  
      13.   
      14.     @Override  
      15.     public int size() {  
      16.         return string.length;  
      17.     }  
      18. }  
      public class MyCollection implements Collection {
      
      	public String string[] = {"A","B","C","D","E"};
      	@Override
      	public Iterator iterator() {
      		return new MyIterator(this);
      	}
      
      	@Override
      	public Object get(int i) {
      		return string[i];
      	}
      
      	@Override
      	public int size() {
      		return string.length;
      	}
      }
      1. public class MyIterator implements Iterator {  
      2.   
      3.     private Collection collection;  
      4.     private int pos = -1;  
      5.       
      6.     public MyIterator(Collection collection){  
      7.         this.collection = collection;  
      8.     }  
      9.       
      10.     @Override  
      11.     public Object previous() {  
      12.         if(pos > 0){  
      13.             pos--;  
      14.         }  
      15.         return collection.get(pos);  
      16.     }  
      17.   
      18.     @Override  
      19.     public Object next() {  
      20.         if(pos<collection.size()-1){  
      21.             pos++;  
      22.         }  
      23.         return collection.get(pos);  
      24.     }  
      25.   
      26.     @Override  
      27.     public boolean hasNext() {  
      28.         if(pos<collection.size()-1){  
      29.             return true;  
      30.         }else{  
      31.             return false;  
      32.         }  
      33.     }  
      34.   
      35.     @Override  
      36.     public Object first() {  
      37.         pos = 0;  
      38.         return collection.get(pos);  
      39.     }  
      40.   
      41. }  
      public class MyIterator implements Iterator {
      
      	private Collection collection;
      	private int pos = -1;
      	
      	public MyIterator(Collection collection){
      		this.collection = collection;
      	}
      	
      	@Override
      	public Object previous() {
      		if(pos > 0){
      			pos--;
      		}
      		return collection.get(pos);
      	}
      
      	@Override
      	public Object next() {
      		if(pos<collection.size()-1){
      			pos++;
      		}
      		return collection.get(pos);
      	}
      
      	@Override
      	public boolean hasNext() {
      		if(pos<collection.size()-1){
      			return true;
      		}else{
      			return false;
      		}
      	}
      
      	@Override
      	public Object first() {
      		pos = 0;
      		return collection.get(pos);
      	}
      
      }

      测试类:

      1. public class Test {  
      2.   
      3.     public static void main(String[] args) {  
      4.         Collection collection = new MyCollection();  
      5.         Iterator it = collection.iterator();  
      6.           
      7.         while(it.hasNext()){  
      8.             System.out.println(it.next());  
      9.         }  
      10.     }  
      11. }  
      public class Test {
      
      	public static void main(String[] args) {
      		Collection collection = new MyCollection();
      		Iterator it = collection.iterator();
      		
      		while(it.hasNext()){
      			System.out.println(it.next());
      		}
      	}
      }

      输出:A B C D E

      此处我们貌似模拟了一个集合类的过程,感觉是不是很爽?其实JDK中各个类也都是这些基本的东西,加一些设计模式,再加一些优化放到一起的,只要我们把这些东西学会了,掌握好了,我们也可以写出自己的集合类,甚至框架!

      17、责任链模式(Chain of Responsibility) 接下来我们将要谈谈责任链模式,有多个对象,每个对象持有对下一个对象的引用,这样就会形成一条链,请求在这条链上传递,直到某一对象决定处理该请求。但是发出者并不清楚到底最终那个对象会处理该请求,所以,责任链模式可以实现,在隐瞒客户端的情况下,对系统进行动态的调整。先看看关系图:

      Abstracthandler类提供了get和set方法,方便MyHandle类设置和修改引用对象,MyHandle类是核心,实例化后生成一系列相互持有的对象,构成一条链。

      1. public interface Handler {  
      2.     public void operator();  
      3. }  
      public interface Handler {
      	public void operator();
      }
      1. public abstract class AbstractHandler {  
      2.       
      3.     private Handler handler;  
      4.   
      5.     public Handler getHandler() {  
      6.         return handler;  
      7.     }  
      8.   
      9.     public void setHandler(Handler handler) {  
      10.         this.handler = handler;  
      11.     }  
      12.       
      13. }  
      public abstract class AbstractHandler {
      	
      	private Handler handler;
      
      	public Handler getHandler() {
      		return handler;
      	}
      
      	public void setHandler(Handler handler) {
      		this.handler = handler;
      	}
      	
      }
      
      1. public class MyHandler extends AbstractHandler implements Handler {  
      2.   
      3.     private String name;  
      4.   
      5.     public MyHandler(String name) {  
      6.         this.name = name;  
      7.     }  
      8.   
      9.     @Override  
      10.     public void operator() {  
      11.         System.out.println(name+"deal!");  
      12.         if(getHandler()!=null){  
      13.             getHandler().operator();  
      14.         }  
      15.     }  
      16. }  
      public class MyHandler extends AbstractHandler implements Handler {
      
      	private String name;
      
      	public MyHandler(String name) {
      		this.name = name;
      	}
      
      	@Override
      	public void operator() {
      		System.out.println(name+"deal!");
      		if(getHandler()!=null){
      			getHandler().operator();
      		}
      	}
      }
      1. public class Test {  
      2.   
      3.     public static void main(String[] args) {  
      4.         MyHandler h1 = new MyHandler("h1");  
      5.         MyHandler h2 = new MyHandler("h2");  
      6.         MyHandler h3 = new MyHandler("h3");  
      7.   
      8.         h1.setHandler(h2);  
      9.         h2.setHandler(h3);  
      10.   
      11.         h1.operator();  
      12.     }  
      13. }  
      public class Test {
      
      	public static void main(String[] args) {
      		MyHandler h1 = new MyHandler("h1");
      		MyHandler h2 = new MyHandler("h2");
      		MyHandler h3 = new MyHandler("h3");
      
      		h1.setHandler(h2);
      		h2.setHandler(h3);
      
      		h1.operator();
      	}
      }

      输出:

      h1deal! h2deal! h3deal!

      此处强调一点就是,链接上的请求可以是一条链,可以是一个树,还可以是一个环,模式本身不约束这个,需要我们自己去实现,同时,在一个时刻,命令只允许由一个对象传给另一个对象,而不允许传给多个对象。

       18、命令模式(Command)

      命令模式很好理解,举个例子,司令员下令让士兵去干件事情,从整个事情的角度来考虑,司令员的作用是,发出口令,口令经过传递,传到了士兵耳朵里,士兵去执行。这个过程好在,三者相互解耦,任何一方都不用去依赖其他人,只需要做好自己的事儿就行,司令员要的是结果,不会去关注到底士兵是怎么实现的。我们看看关系图:

      Invoker是调用者(司令员),Receiver是被调用者(士兵),MyCommand是命令,实现了Command接口,持有接收对象,看实现代码:

      1. public interface Command {  
      2.     public void exe();  
      3. }  
      public interface Command {
      	public void exe();
      }
      1. public class MyCommand implements Command {  
      2.   
      3.     private Receiver receiver;  
      4.       
      5.     public MyCommand(Receiver receiver) {  
      6.         this.receiver = receiver;  
      7.     }  
      8.   
      9.     @Override  
      10.     public void exe() {  
      11.         receiver.action();  
      12.     }  
      13. }  
      public class MyCommand implements Command {
      
      	private Receiver receiver;
      	
      	public MyCommand(Receiver receiver) {
      		this.receiver = receiver;
      	}
      
      	@Override
      	public void exe() {
      		receiver.action();
      	}
      }
      1. public class Receiver {  
      2.     public void action(){  
      3.         System.out.println("command received!");  
      4.     }  
      5. }  
      public class Receiver {
      	public void action(){
      		System.out.println("command received!");
      	}
      }
      
      1. public class Invoker {  
      2.       
      3.     private Command command;  
      4.       
      5.     public Invoker(Command command) {  
      6.         this.command = command;  
      7.     }  
      8.   
      9.     public void action(){  
      10.         command.exe();  
      11.     }  
      12. }  
      public class Invoker {
      	
      	private Command command;
      	
      	public Invoker(Command command) {
      		this.command = command;
      	}
      
      	public void action(){
      		command.exe();
      	}
      }
      1. public class Test {  
      2.   
      3.     public static void main(String[] args) {  
      4.         Receiver receiver = new Receiver();  
      5.         Command cmd = new MyCommand(receiver);  
      6.         Invoker invoker = new Invoker(cmd);  
      7.         invoker.action();  
      8.     }  
      9. }  
      public class Test {
      
      	public static void main(String[] args) {
      		Receiver receiver = new Receiver();
      		Command cmd = new MyCommand(receiver);
      		Invoker invoker = new Invoker(cmd);
      		invoker.action();
      	}
      }

      输出:command received!

      这个很哈理解,命令模式的目的就是达到命令的发出者和执行者之间解耦,实现请求和执行分开,熟悉Struts的同学应该知道,Struts其实就是一种将请求和呈现分离的技术,其中必然涉及命令模式的思想!

  • 相关阅读:
    Hibernate入门
    安卓第四周作业
    第十三周作业
    第十三周上机作业
    第十二周作业
    第十二周上机作业
    第十一周作业
    第十一周上机作业
    第十周上机作业
    第九周上机作业
  • 原文地址:https://www.cnblogs.com/jakeasd/p/5514636.html
Copyright © 2011-2022 走看看