http://acm.nyist.net/JudgeOnline/problem.php?pid=737
动态规划状态方程:
dp[i][j]=d[i][k]+dp[k+1][j]+(sum[k]-sum[i-1])+(sum[j]-sum[k])
边界:0 <=i,j<=n,i<=k<j
if(i==j) dp[i][j]=0;
sum[i]=前i个数的和。
#include <iostream> #include <cstring> using namespace std; int dp[205][205],a[205],sum[205]; int f(int i,int j) { int k,ans; if(dp[i][j]>=0) return dp[i][j]; if(i==j) return dp[i][j]=0; for(k=i;k<j;k++) { if(dp[i][j]<0) dp[i][j]=1000000005; ans=f(i,k)+f(k+1,j)+(sum[k]-sum[i-1])+(sum[j]-sum[k]); if(ans<dp[i][j]) dp[i][j]=ans; } return dp[i][j]; } int main(int argc, char *argv[]) { int n,i,j,k; while(cin>>n) { for(i=1;i<=n;i++) {cin>>a[i];sum[i]=a[i]+sum[i-1];} memset(dp,-1,sizeof(dp)); cout<<f(1,n)<<endl; } return 0; }