zoukankan      html  css  js  c++  java
  • 第6章 图

    3. 克鲁斯卡尔(Kruskal) 算法

     克鲁斯卡尔算法的基本思想是:对一个有n个顶点的无向连通图,将图中的边按权值大小依次选取,若选取的边使生成树不形成回路,则把它加入到树中;若形成回路,则将它舍弃。如此进行下去,直到树中包含有n-1条边为止。(当整个图为连通图时为n-1条边)

    根据邻接矩阵存储结构实现Kruskal算法:(邻接链表的实现在前面的博客)

            public void Kruskal()
            {
                bool[,] markers = new bool[NodeNum, NodeNum];
                Dictionary<AdjListNode<T>, VexListNode<T>> dic = new Dictionary<AdjListNode<T>, VexListNode<T>>();
    
                while (true)
                {
                    AdjListNode<T> adjNode = null;
                    VexListNode<T> vexNode = null;
    
                    AdjListNode<T> currentAdjNode = null;
                    VexListNode<T> currentVexNode = null;
                    for (int j = 0; j < NodeNum; j++)
                    {
                        currentVexNode = vexList[j];
                        currentAdjNode = currentVexNode.FirstAdj;
    
                        while (currentAdjNode != null)
                        {
                            if (markers[j, currentAdjNode.AdjVexIndex] == false)
                            {
                                if (adjNode == null || currentAdjNode.Weight < adjNode.Weight)
                                {
                                    vexNode = currentVexNode;
                                    adjNode = currentAdjNode;
                                }
                            }
    
                            currentAdjNode = currentAdjNode.Next;
                        }
                    }
    
                    if (adjNode == null)
                        break;
    
                    dic.Add(adjNode, vexNode);
    
                    markers[IsNode(vexNode.Node), adjNode.AdjVexIndex] = true;
                    markers[adjNode.AdjVexIndex, IsNode(vexNode.Node)] = true;
    
    
                    bool ifCycle = true;
    
                    while (ifCycle)
                    {
                        ifCycle = false;
    
                        for (int j = 0; j < NodeNum; j++)
                        {
                            for (int k = 0; k < NodeNum; k++)
                            {
                                if (markers[j, k] == true)
                                {
                                    for (int m = 0; m < NodeNum; m++)
                                    {
                                        if (m == k)
                                            continue;
                                        if (markers[k, m] == true && markers[j, m] == false)
                                        {
                                            markers[j, m] = true;
                                            markers[m, j] = true;
                                            ifCycle = true;
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
    
                foreach (var i in dic.Keys)
                {
                    Console.WriteLine(dic[i].Node.Value.ToString() + " -> " + i.Weight + " -> " + vexList[i.AdjVexIndex].Node.Value.ToString());
                }
            }

    调用代码:

                GraphAdjList<int> adjList = new GraphAdjList<int>(100);
    
                //Inial graph object
                GraphNode<int> node1 = new GraphNode<int>(1);
                GraphNode<int> node2 = new GraphNode<int>(2);
                GraphNode<int> node3 = new GraphNode<int>(3);
                GraphNode<int> node4 = new GraphNode<int>(4);
                GraphNode<int> node5 = new GraphNode<int>(5);
                GraphNode<int> node6 = new GraphNode<int>(6);
                GraphNode<int> node7 = new GraphNode<int>(7);
                GraphNode<int> node8 = new GraphNode<int>(8);
    
                adjList.SetNode(node1);
                adjList.SetNode(node2);
                adjList.SetNode(node3);
                adjList.SetNode(node4);
                adjList.SetNode(node5);
                adjList.SetNode(node6);
                adjList.SetNode(node7);
                adjList.SetNode(node8);
    
                adjList.SetEdge(0, node2, node1, 2);
                adjList.SetEdge(1,node1, node3, 4);
                adjList.SetEdge(2,node1, node4, 4);
                adjList.SetEdge(3, node1, node5, 3);
                adjList.SetEdge(4, node2, node3, 3);
                adjList.SetEdge(5, node2, node4, 1);
                adjList.SetEdge(6, node2, node5, 2);
                adjList.SetEdge(7, node3, node4, 4);
                adjList.SetEdge(8, node3, node5, 4);
                adjList.SetEdge(9, node5, node4, 2);
                adjList.SetEdge(10, node6, node7, 3);
                adjList.SetEdge(11, node8, node6, 2);
                adjList.SetEdge(12, node7, node8, 3);
    
                adjList.Kruskal();
                System.Console.ReadKey();


    输出为:

    2 -> 1 -> 4
    2 -> 2 -> 5
    2 -> 2 -> 1
    8 -> 2 -> 6
    2 -> 3 -> 3
    6 -> 3 -> 7

  • 相关阅读:
    [XPath] XPath 与 lxml (五)XPath 实例
    [XPath] XPath 与 lxml (四)XPath 运算符
    [XPath] XPath 与 lxml (三)XPath 坐标轴
    [XPath] XPath 与 lxml (二)XPath 语法
    拥抱.NET Core系列:MemoryCache 缓存过期
    拥抱.NET Core系列:MemoryCache 初识
    一个开源的强类型客户端(.NET 中的 Open Fegin)— Rabbit Go
    Configuration Extensions
    拥抱.NET Core系列:Logging (1)
    拥抱.NET Core系列:依赖注入(2)
  • 原文地址:https://www.cnblogs.com/james1207/p/3324803.html
Copyright © 2011-2022 走看看