zoukankan      html  css  js  c++  java
  • Java程序员必知的8大排序

    Java程序员必知的8大排序

    8种排序之间的关系:


    1, 直接插入排序

    (1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排

    好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数

    也是排好顺序的。如此反复循环,直到全部排好顺序。

    (2)实例


    (3)用java实现

    package ppl;   
     public class insertSort {
       public insertSort(){    
       inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};   
       int temp=0;    
       for(int i=1;i<a.length;i++){    
         int j=i-1;      
         temp=a[i];        
         for(;j>=0&&temp<a[j];j--){      
         a[j+1]=a[j];   //将大于temp的值整体后移一个单位     
         }         
         a[j+1]=temp;    
       }      
       for(int i=0;i<a.length;i++)      
          System.out.println(a[i]); 
       } 
     } 


    2,希尔排序(最小增量排序)

    (1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。

    (2)实例:

    (3)用java实现

    public class shellSort {  
      public  shellSort(){     
      int a[]={1,54,6,3,78,34,12,45,56,100};  
      double d1=a.length;     
      int temp=0;      
      while(true){      
         d1= Math.ceil(d1/2);         
         int d=(int) d1;         
         for(int x=0;x<d;x++){            
             for(int i=x+d;i<a.length;i+=d){          
                int j=i-d;              
                temp=a[i];                 
                for(;j>=0&&temp<a[j];j-=d)
                     a[j+d]=a[j];                
             }                 
             a[j+d]=temp;             
          }         
        }        
        if(d==1)        
          break;    
      }    
      for(int i=0;i<a.length;i++)     
         System.out.println(a[i]);
      } 
    } 


    3.简单选择排序

    (1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;

    然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

    (2)实例:


    public class selectSort {   
       public selectSort(){        
       int a[]={1,54,6,3,78,34,12,45};     
       int position=0;         
       for(int i=0;i<a.length;i++){         
            int j=i+1;            
            position=i;           
            int temp=a[i];          
            for(;j<a.length;j++){            
            if(a[j]<temp){                
            temp=a[j];               
            position=j;          
            }          
        }           
          a[position]=a[i];        
          a[i]=temp;        
      }         
      for(int i=0;i<a.length;i++)        
          System.out.println(a[i]);   
       }
    } 


    4,堆排序

    (1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。

    堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

    (2)实例:

    初始序列:46,79,56,38,40,84

    建堆:

    交换,从堆中踢出最大数


    依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。

    (3)用java实现

     

    package junit.test;
    
    import java.util.Arrays;
    
    public class HeapSort {
    	int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
    			98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
    
    	public HeapSort() {
    		heapSort(a);
    	}
    
    	public void heapSort(int[] a) {
    		System.out.println("开始排序");
    		int arrayLength = a.length; // 循环建堆
    		for (int i = 0; i < arrayLength - 1; i++) { // 建堆
    			buildMaxHeap(a, arrayLength - 1 - i); // 交换堆顶和最后一个元素
    			swap(a, 0, arrayLength - 1 - i);
    			System.out.println(Arrays.toString(a));
    		}
    	}
    
    	private void swap(int[] data, int i, int j) { // TODO Auto-generated method
    		// stub
    		int tmp = data[i];
    		data[i] = data[j];
    		data[j] = tmp;
    	} // 对data数组从0到lastIndex建大顶堆
    
    	private void buildMaxHeap(int[] data, int lastIndex) { // TODO
    		// Auto-generated
    		// method stub
    		// //从lastIndex处节点(最后一个节点)的父节点开始
    		for (int i = (lastIndex - 1) / 2; i >= 0; i--) { // k保存正在判断的节点
    			int k = i; // 如果当前k节点的子节点存在
    			while (k * 2 + 1 <= lastIndex) { // k节点的左子节点的索引
    				int biggerIndex = 2 * k + 1; // 如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
    				if (biggerIndex < lastIndex) { // 若果右子节点的值较大
    					if (data[biggerIndex] < data[biggerIndex + 1]) { // biggerIndex总是记录较大子节点的索引
    						biggerIndex++;
    					}
    				} // 如果k节点的值小于其较大的子节点的值
    				if (data[k] < data[biggerIndex]) { // 交换他们
    					swap(data, k, biggerIndex); // 将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
    					k = biggerIndex;
    				} else {
    					break;
    				}
    			}
    		}
    	}
    
    }
    



    5.冒泡排序

    (1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。

    (2)实例:



    (3)用java实现


    package junit.test;
    
    public class bubbleSort {
    	public bubbleSort() {
    		int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62,
    				99, 98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
    		int temp = 0;
    		for (int i = 0; i < a.length - 1; i++) {
    			for (int j = 0; j < a.length - 1 - i; j++) {
    				if (a[j] > a[j + 1]) {
    					temp = a[j];
    					a[j] = a[j + 1];
    					a[j + 1] = temp;
    				}
    			}
    		}
    		for (int i = 0; i < a.length; i++)
    			System.out.println(a[i]);
    	}
    }


    6.快速排序

     

    (1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。

    (2)实例:


    (3)用java实现


    package junit.test;
    
    public class quickSort {
    	int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
    			98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
    
    	public quickSort() {
    		quick(a);
    		for (int i = 0; i < a.length; i++)
    			System.out.println(a[i]);
    	}
    
    	public int getMiddle(int[] list, int low, int high) {
    		int tmp = list[low]; // 数组的第一个作为中轴
    		while (low < high) {
    			while (low < high && list[high] >= tmp) {
    				high--;
    			}
    			list[low] = list[high]; // 比中轴小的记录移到低端
    			while (low < high && list[low] <= tmp) {
    				low++;
    			}
    			list[high] = list[low]; // 比中轴大的记录移到高端
    		}
    		list[low] = tmp; // 中轴记录到尾
    		return low; // 返回中轴的位置
    	}
    
    	public void _quickSort(int[] list, int low, int high) {
    		if (low < high) {
    			int middle = getMiddle(list, low, high); // 将list数组进行一分为二
    			_quickSort(list, low, middle - 1); // 对低字表进行递归排序
    			_quickSort(list, middle + 1, high); // 对高字表进行递归排序
    		}
    	}
    
    	public void quick(int[] a2) {
    		if (a2.length > 0) { // 查看数组是否为空
    			_quickSort(a2, 0, a2.length - 1);
    		}
    	}
    }
    


    7、归并排序

    (1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

    (2)实例:


    (3)用java实现

    package junit.test;
    
    import java.util.Arrays;
    
    public class mergingSort {
    	int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
    			98, 54, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
    
    	public mergingSort() {
    		sort(a, 0, a.length - 1);
    		for (int i = 0; i < a.length; i++)
    			System.out.println(a[i]);
    	}
    
    	public void sort(int[] data, int left, int right) { 	
    		if (left < right) { // 找出中间索引
    			int center = (left + right) / 2; // 对左边数组进行递归
    			sort(data, left, center); // 对右边数组进行递归
    			sort(data, center + 1, right); // 合并
    			merge(data, left, center, right);
    		}
    	}
    
    	public void merge(int[] data, int left, int center, int right) {
                           
    		int[] tmpArr = new int[data.length];
    		int mid = center + 1; // third记录中间数组的索引
    		int third = left;
    		int tmp = left;
    		while (left <= center && mid <= right) { // 从两个数组中取出最小的放入中间数组
    			if (data[left] <= data[mid]) {
    				tmpArr[third++] = data[left++];
    			} else {
    				tmpArr[third++] = data[mid++];
    			}
    		} // 剩余部分依次放入中间数组
    		while (mid <= right) {
    			tmpArr[third++] = data[mid++];
    		}
    		while (left <= center) {
    			tmpArr[third++] = data[left++];
    		} // 将中间数组中的内容复制回原数组
    		while (tmp <= right) {
    			data[tmp] = tmpArr[tmp++];
    		}
    		System.out.println(Arrays.toString(data));
    	}
    }
    


    8、基数排序

    (1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。

    (2)实例:


    (3)用java实现

    package junit.test;
    
    import java.util.ArrayList;
    import java.util.List;
    
    public class radixSort {
    	int a[] = { 49, 38, 65, 97, 76, 13, 27, 49, 78, 34, 12, 64, 5, 4, 62, 99,
    			98, 54, 101, 56, 17, 18, 23, 34, 15, 35, 25, 53, 51 };
    
    	public radixSort() {
    		sort(a);
    		for (int i = 0; i < a.length; i++)
    			System.out.println(a[i]);
    	}
    
    	public void sort(int[] array) { // 首先确定排序的趟数;
    		int max = array[0];
    		for (int i = 1; i < array.length; i++) {
    			if (array[i] > max) {
    				max = array[i];
    			}
    		}
    		int time = 0; // 判断位数;
    		while (max > 0) {
    			max /= 10;
    			time++;
    		} // 建立10个队列;
    		List<ArrayList> queue = new ArrayList<ArrayList>();
    		for (int i = 0; i < 10; i++) {
    			ArrayList<Integer> queue1 = new ArrayList<Integer>();
    			queue.add(queue1);
    		} // 进行time次分配和收集;
    		for (int i = 0; i < time; i++) { // 分配数组元素;
    			for (int j = 0; j < array.length; j++) { // 得到数字的第time+1位数;
    				int x = array[j] % (int) Math.pow(10, i + 1)
    						/ (int) Math.pow(10, i);
    				ArrayList<Integer> queue2 = queue.get(x);
    				queue2.add(array[j]);
    				queue.set(x, queue2);
    			}
    			int count = 0;// 元素计数器; //收集队列元素;
    			for (int k = 0; k < 10; k++) {
    				while (queue.get(k).size() > 0) {
    					ArrayList<Integer> queue3 = queue.get(k);
    					array[count] = queue3.get(0);
    					queue3.remove(0);
    					count++;
    				}
    			}
    		}
    	}
    
    }
    






  • 相关阅读:
    如何保证消息不被重复消费?
    接口幂等性实现
    JVM 线上故障排查基本操作
    对于Arraylist 的一些疑问
    递归思想与递归编程
    linux配置javaJDK
    python数据分析-pandas常用方法
    python 数据分析-pandas数据结构
    python数据分析-numpy 矩阵操作
    python数据分析-numpy数组操作
  • 原文地址:https://www.cnblogs.com/james1207/p/3367767.html
Copyright © 2011-2022 走看看