zoukankan      html  css  js  c++  java
  • UVA 11388

     

    I C   O N L I N E   C O T E S T   0 0 8

    Problem D: GCD LCM

    Input: standard input
    Output: standard output

    The GCD of two positive integers is the largest integer that divides both the integers without any remainder. The LCM of two positive integers is the smallest positive integer that is divisible by both the integers. A positive integer can be the GCD of many pairs of numbers. Similarly, it can be the LCM of many pairs of numbers. In this problem, you will be given two positive integers. You have to output a pair of numbers whose GCD is the first number and LCM is the second number.

    Input

    The first line of input will consist of a positive integer TT denotes the number of cases. Each of the next T lines will contain two positive integer, G and L.

    Output

    For each case of input, there will be one line of output. It will contain two positive integers a and ba ≤ b, which has a GCD of G and LCM of L. In case there is more than one pair satisfying the condition, output the pair for which a is minimized. In case there is no such pair, output -1.

    Constraints

    -           T ≤ 100

    -           Both and will be less than 231.

    Sample Input

    Output for Sample Input

    2

    1 2

    3 4

    1 2

    -1

    Problem setter: Shamim Hafiz

     

    题目大意:已知gcd(a,b)以及lcm(a,b) 求a和b,多个的话输出a最小的那个

    解题思路看代码:

    #include <iostream>
    #include <cstdio>
    using namespace std;
    
    int main(){
    	int t,g,l;
    	scanf("%d",&t);
    	while(t-- >0){
    		scanf("%d%d",&g,&l);
    		if(l%g==0) printf("%d %d
    ",g,l);
    		else printf("-1
    ");
    	}
    	return 0;
    }




  • 相关阅读:
    坐标变化
    labelme VOC
    threejs物体设置中心坐标
    IfcProjectOrderTypeEnum
    IfcCostItemTypeEnum
    利用Mono.Cecil动态修改程序集来破解商业组件(仅用于研究学习)
    依赖注入框架Autofac的简单使用
    阿里技术嘉年华官网上线啦!
    Silverlight 4以下版本模拟鼠标双击事件
    iOS学习系列 利用ASIHTTPRequest实现异步队列
  • 原文地址:https://www.cnblogs.com/james1207/p/3395402.html
Copyright © 2011-2022 走看看