zoukankan      html  css  js  c++  java
  • ILOG的一个基本应用——解决运输问题、转运问题

    一、Ilog软件

    该软件用来解决优化问题,大部分是线性问题,深一点的其他内容还不清楚。只知道一些基础的应用,网上相关内容很少。接下来就解决一个简单的运输问题

    二、运输问题


    数学模型


    ILOG OPL程序

    {string} CitiesA=...;
    {string} CitiesB=...;
    float capacity = ...;
    float supply[CitiesA] =...;
    float demand[CitiesB] =...;
    assert    
        sum(o in CitiesA) supply[o] == sum(d in CitiesB) demand[d];
    float cost[CitiesA][CitiesB] = ...;
    dvar float+ trans[CitiesA][CitiesB];
    constraint ct1;
    constraint ct2;
    constraint ct3;
    minimize sum( o in CitiesA , d in CitiesB) cost[o][d] * trans[o,d];
    
    subject to {
    ct1=forall(o in CitiesA) 
    	sum(d in CitiesB) trans[o][d] == supply[o]; 
    ct2=forall(d in CitiesB) 
    	sum(o in CitiesA) trans[o][d] == demand[d];
    ct3=forall(o in CitiesA , d in CitiesB)
    	trans[o,d] <= capacity;
    } 

    数据文件

    CitiesA = { A1 A2 A3 A4 A5};
    CitiesB={ B1  B2  B3  B4  B5  B6  B7 B8 };  
    capacity  = 825;
    supply =[ 400 700 800 450 550];
    demand =[300 400 100 275 650 325 300 550];               
    cost =[[ 30  10  8  10 11 71 6 50]
          [ 22   7 10   7 21 82 13 30]
          [ 19  11 12  10 25 83 15 26]
          [ 15  20 30  40 50 25 16 12]
          [ 10  49 23  50 28 43 56 20]
          ]; 
     

    三、转运问题




    Ilog opl实现

    {string} CitiesA=...;
    {string} CitiesB=...;
    {string} CitiesC=...;
    float capacity = ...;
    float supply[CitiesA] =...;
    float demand[CitiesB] =...;
    float cost1[CitiesA][CitiesC] = ...;
    float cost2[CitiesC][CitiesB]=...;
    dvar float+ trans1[CitiesA][CitiesC];
    dvar float+ trans2[CitiesC][CitiesB];
    constraint ct1;
    constraint ct2;
    constraint ct3;
    constraint ct4;
    minimize sum( o in CitiesA , t in CitiesC) cost1[o][t] * trans1[o][t]+
    		 sum( t in CitiesC , d in CitiesB) cost2[t][d] * trans2[t][d];
    
    subject to {
    ct1=forall(o in CitiesA) 
    	sum(t in CitiesC) trans1[o][t] <= supply[o]; 
    ct2=forall(d in CitiesB) 
    	sum(t in CitiesC) trans2[t][d] == demand[d];
    ct3=forall(t in CitiesC)
    	sum(o in CitiesA)trans1[o][t] == sum(d in CitiesB)trans2[t][d];
    ct4=forall(o in CitiesA,d in CitiesB,t in CitiesC)
    {
        trans1[o,t]<=capacity;
        trans2[t,d]<=capacity;
    }	
    } 


    数据

    CitiesA = { A1 A2 A3};
    CitiesB={ B1  B2  B3  B4  };  
    CitiesC={C1 C2 C3 C4};
    capacity  = 20;
    supply =[7 4 9];
    demand =[3 6 5 6];               
    cost1 =[[2 1 4 3 ]
            [3 5 100 2 ]
            [1 100 2 3 ]
           ]; 
    cost2=[[2 8 4 6]
           [4 5 2 7]
           [1 8 2 4]
           [1 100 2 6]
          ]; 


    对于产地、转运站、销地之间都可以互相运输的复杂情况,建模不够理想,没有实现。








  • 相关阅读:
    借贷宝什么鬼 砸钱推广是妙招还是险棋
    div+css 怎么让一个小div在另一个大div里面 垂直居中
    php重新整理数组索引
    JS 得细心的坑位
    chrome表单自动填充导致input文本框背景变成偏黄色问题解决
    phpstorm配置xdebug
    MySQLi基于面向对象的编程
    PHP中开启gzip压缩的2种方法
    SVN创建主干,分支、合并分支
    懒加载和预加载【转载】
  • 原文地址:https://www.cnblogs.com/james1207/p/3400446.html
Copyright © 2011-2022 走看看