Given a target number, a non-negative integer k and an integer array A sorted in ascending order, find the k closest numbers to target in A, sorted in ascending order by the difference between the number and target. Otherwise, sorted in ascending order by number if the difference is same.
The value k is a non-negative integer and will always be smaller than the length of the sorted array.
Length of the given array is positive and will not exceed 10^4
Absolute value of elements in the array and x will not exceed 10^4
Example
Given A = [1, 2, 3], target = 2 and k = 3, return [2, 1, 3].
Given A = [1, 4, 6, 8], target = 3 and k = 3, return [4, 1, 6].
Challenge
O(logn + k) time complexity.
1.普通二分法找到最接近target的数。
2.两根指针向外扩去,选绝对值小的放到结果数组里。
细节:两根指针向外扩去的过程中注意边界越界问题,要先检测。
我的实现
public class Solution { /** * @param A: an integer array * @param target: An integer * @param k: An integer * @return: an integer array */ public int[] kClosestNumbers(int[] A, int target, int k) { // write your code here if(A == null || A.length == 0) { return new int[0]; } int start = 0; int end = A.length - 1; while (start + 1 < end) { int mid = start + (end - start) / 2; if (target >= A[mid]) { start = mid; } else { end = mid; } } int[] result = new int[k]; for (int i = 0; i < k; i++) { if (start < 0) { result[i] = A[end]; end++; } else if (end >= A.length) { result[i] = A[start]; start--; } else if (Math.abs(A[start] - target) <= Math.abs(A[end] - target)) { result[i] = A[start]; start--; } else { result[i] = A[end]; end++; } } return result; } }