zoukankan      html  css  js  c++  java
  • 奇异值分解(SVD) --- 几何意义 (转载)

    PS:一直以来对SVD分解似懂非懂,此文为译文,原文以细致的分析+大量的可视化图形演示了SVD的几何意义。能在有限的篇幅把 这个问题讲解的如此清晰,实属不易。原文举了一个简单的图像处理问题,简单形象,真心希望路过的各路朋友能从不同的角度阐述下自己对SVD实际意义的理 解,比如 个性化推荐中应用了SVD,文本以及Web挖掘的时候也经常会用到SVD。

    原文:We recommend a singular value decomposition

    关于线性变换部分的一些知识可以猛戳这里  奇异值分解(SVD) --- 线性变换几何意义

    奇异值分解( The singular value decomposition )

    该部分是从几何层面上去理解二维的SVD:对于任意的 2 x 2 矩阵,通过SVD可以将一个相互垂直的网格(orthogonal grid)变换到另外一个相互垂直的网格。

    我们可以通过向量的方式来描述这个事实: 首先,选择两个相互正交的单位向量 v1  v2, 向量Mv1 和 Mv2 正交。

    u1 和 u2分别表示Mv1 和 Mv2的单位向量,σ1 * u1 =  Mv1 和 σ2 * u2 =  Mv2。σ1 和 σ2分别表示这不同方向向量上的模,也称作为矩阵 M 的奇异值。

    这样我们就有了如下关系式

    Mv1 = σ1u1 
    Mv2 = σ2u2

    我们现在可以简单描述下经过 M 线性变换后的向量 x 的表达形式。由于向量v1 和 v2是正交的单位向量,我们可以得到如下式子:

    x = (v1x) v1 + (v2x) v2

    这就意味着:

    Mx = (v1x) Mv1 + (v2x) Mv2 
    Mx = (v1x) σ1u1 + (v2x) σ2u2

    向量内积可以用向量的转置来表示,如下所示

    vx = vTx

    最终的式子为

    Mx = u1σ1 v1Tx + u2σ2 v2Tx 
    M = u1σ1 v1T + u2σ2 v2T

    上述的式子经常表示成

    M = UΣVT

    u 矩阵的列向量分别是u1,u2 ,Σ 是一个对角矩阵,对角元素分别是对应的σ1 和 σ2V 矩阵的列向量分别是v1,v2。上角标 T 表示矩阵 V 的转置。

       这就表明任意的矩阵 M 是可以分解成三个矩阵。V 表示了原始域的标准正交基,u 表示经过 M 变换后的co-domain的标准正交基,Σ 表示了V 中的向量与u 中 相对应向量之间的关系。(V describes an orthonormal basis in the domain, and U describes an orthonormal basis in the co-domain, and Σ describes how much the vectors in V are stretched to give the vectors in U.)

    如何获得奇异值分解?( How do we find the singular decomposition? )

       事实上我们可以找到任何矩阵的奇异值分解,那么我们是如何做到的呢?假设在原始域中有一个单位圆,如下图所示。经过 M 矩阵变换以后在co-domain中单位圆会变成一个椭圆,它的长轴(Mv1)和短轴(Mv2)分别对应转换后的两个标准正交向量,也是在椭圆范围内最长和最短的两个向量。

    换句话说,定义在单位圆上的函数|Mx|分别在v1v2方向上取得最大和最小值。这样我们就把寻找矩阵的奇异值分解过程缩小到了优化函数|Mx|上了。结果发现(具体的推到过程这里就不详细介绍了)这个函数取得最优值的向量分别是矩阵 MT M 的特征向量。由于MTM是对称矩阵,因此不同特征值对应的特征向量都是互相正交的,我们用vi 表示MTM的所有特征向量。奇异值σi = |Mvi| , 向量 ui  Mvi 方向上的单位向量。但为什么ui也是正交的呢?

    推倒如下:

    σi 和 σj分别是不同两个奇异值

    Mvi = σiui 
    Mvj = σjuj.

    我们先看下MviMvj,并假设它们分别对应的奇异值都不为零。一方面这个表达的值为0,推到如下

    Mvi Mvj = viTMT Mvj = vi MTMvj = λjvi vj = 0

    另一方面,我们有

    Mvi Mvj = σiσj ui uj = 0

    因此,ui 和 uj是正交的。但实际上,这并非是求解奇异值的方法,效率会非常低。这里也主要不是讨论如何求解奇异值,为了演示方便,采用的都是二阶矩阵。

    应用实例(Another example)

    现在我们来看几个实例。

    实例一

    经过这个矩阵变换后的效果如下图所示

    在这个例子中,第二个奇异值为 0,因此经过变换后只有一个方向上有表达。

    M = u1σ1 v1T.

    换句话说,如果某些奇异值非常小的话,其相对应的几项就可以不同出现在矩阵 M 的分解式中。因此,我们可以看到矩阵 M 的秩的大小等于非零奇异值的个数。

    实例二

    我们来看一个奇异值分解在数据表达上的应用。假设我们有如下的一张 15 x 25 的图像数据。

    如图所示,该图像主要由下面三部分构成。

    我们将图像表示成 15 x 25 的矩阵,矩阵的元素对应着图像的不同像素,如果像素是白色的话,就取 1,黑色的就取 0. 我们得到了一个具有375个元素的矩阵,如下图所示

    如果我们对矩阵M进行奇异值分解以后,得到奇异值分别是

    σ1 = 14.72 
    σ2 = 5.22 
    σ3 = 3.31

    矩阵M就可以表示成

    M=u1σ1 v1T + u2σ2 v2T + u3σ3 v3T

    vi具有15个元素,ui 具有25个元素,σi 对应不同的奇异值。如上图所示,我们就可以用123个元素来表示具有375个元素的图像数据了。

    实例三

    减噪(noise reduction)

    前面的例子的奇异值都不为零,或者都还算比较大,下面我们来探索一下拥有零或者非常小的奇异值的情况。通常来讲,大的奇异值对应的部分会包含更多的信息。比如,我们有一张扫描的,带有噪声的图像,如下图所示

    我们采用跟实例二相同的处理方式处理该扫描图像。得到图像矩阵的奇异值:

    σ1 = 14.15 
    σ2 = 4.67 
    σ3 = 3.00 
    σ4 = 0.21 
    σ5 = 0.19 
    ... 
    σ15 = 0.05

    很明显,前面三个奇异值远远比后面的奇异值要大,这样矩阵 M 的分解方式就可以如下:

    M  u1σ1 v1T + u2σ2 v2T + u3σ3 v3T

    经过奇异值分解后,我们得到了一张降噪后的图像。

    实例四

    数据分析(data analysis)

    我们搜集的数据中总是存在噪声:无论采用的设备多精密,方法有多好,总是会存在一些误差的。如果你们还记得上文提到的,大的奇异值对应了矩阵中的主要信息的话,运用SVD进行数据分析,提取其中的主要部分的话,还是相当合理的。

    作为例子,假如我们搜集的数据如下所示:

    我们将数据用矩阵的形式表示:

    经过奇异值分解后,得到

    σ1 = 6.04 
    σ2 = 0.22

    由于第一个奇异值远比第二个要大,数据中有包含一些噪声,第二个奇异值在原始矩阵分解相对应的部分可以忽略。经过SVD分解后,保留了主要样本点如图所示

    就保留主要样本数据来看,该过程跟PCA( principal component analysis)技术有一些联系,PCA也使用了SVD去检测数据间依赖和冗余信息.

    总结(Summary)

       这篇文章非常的清晰的讲解了SVD的几何意义,不仅从数学的角度,还联系了几个应用实例形象的论述了SVD是如何发现数据中主要信息的。在 netflix prize中许多团队都运用了矩阵分解的技术,该技术就来源于SVD的分解思想,矩阵分解算是SVD的变形,但思想还是一致的。之前算是能够运用矩阵分解 技术于个性化推荐系统中,但理解起来不够直观,阅读原文后醍醐灌顶,我想就从SVD能够发现数据中的主要信息的思路,就几个方面去思考下如何利用数据中所 蕴含的潜在关系去探索个性化推荐系统。也希望路过的各位大侠不吝分享呀。

    References:

    Gilbert Strang, Linear Algebra and Its Applications. Brooks Cole

    William H. Press et al, Numercial Recipes in C: The Art of Scientific Computing. Cambridge University Press.

    Dan Kalman, A Singularly Valuable Decomposition: The SVD of a Matrix, The College Mathematics Journal 27 (1996), 2-23.

    If You Liked This, You're Sure to Love That, The New York Times, November 21, 2008.


    http://blog.sciencenet.cn/blog-696950-699432.html

     
  • 相关阅读:
    浙江省CIO协会钱塘江论坛近日在网易云创沙龙宣布成立
    用Python解析XMind
    Flask写web时cookie的处理
    一篇文章看懂Facebook和新浪微博的智能FEED
    改进网易云音乐的“音乐社交”构想
    移动端爬虫工具与方法介绍
    用供应链管理思路降低教培产品成本
    【网易严选】iOS持续集成打包(Jenkins+fastlane+nginx)
    网易严选的wkwebview测试之路
    linux多进程之间的文件锁
  • 原文地址:https://www.cnblogs.com/jason-wyf/p/6777565.html
Copyright © 2011-2022 走看看