zoukankan      html  css  js  c++  java
  • matplotlib学习之绘图基础

    matplotlib基础概念:http://www.cnblogs.com/jasonhaven/p/7609059.html

    matplotlib颜色样式学习:http://www.cnblogs.com/jasonhaven/p/7625436.html

    1.基本图形

    散点图:显示两组数据的值,每个点的坐标位置由变量的值决定,头一组不连续的点完成,用于观察两种变量的相关性。

    折线图:用直线段将各种数据连接起来组成的图形,常用来观察数据随时间变化的趋势。

    条形图:以长方形的长度为变量的统计图表,用来比较多个项目分类的数据大小,通常利用较小的数据集分析。

    直方图:由一系列高度不等的纵向条形组成,表示数据分析的情况。

    饼图:饼状图显示一个数据系列中各项的大小与各项占总和的比例。

    箱线图:箱线图又称为盒装图,盒式图或者箱形图,是一种用作显示数据分散情况的统计图。

    其中条形图与直方图的区别是:

    首先,条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)则是固定的,直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义

    其次,由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列

    最后,条形图主要用于展示分类数据,而直方图则主要用于展示数据型数据

    2.基础任务

    a.绘制股票跌涨前一天和今天是否有相关性的散点图,并设置散点图的常用属性,绘制股票开盘价和最高价前一天和今天是否有相关性的散点图,并设置散点图的常用属性

    b.绘制折线图,并设置属性

    c绘制条形图,并设置属性

    d.绘制直方图,并设置属性

    e绘制饼图,并设置属性.

    f.绘制箱线图,并设置属性

     

    2.操作文件(000001.csv)

    Date,Open,High,Low,Close,Turnover,Volume
    1/5/2015,3258.63,3369.28,3253.88,3350.52,549760.13,53135238400
    1/6/2015,3330.8,3394.22,3303.18,3351.45,532398.46,50166169600
    1/7/2015,3326.65,3374.9,3312.21,3373.95,436416.7,39191888000
    1/8/2015,3371.96,3381.57,3285.1,3293.46,399230.3,37113116800
    1/9/2015,3276.97,3404.83,3267.51,3285.41,458648,41024086400
    1/12/2015,3258.21,3275.19,3191.58,3229.32,366273.06,32206467200
    1/13/2015,3223.54,3259.39,3214.41,3235.3,273588.77,23072576000
    1/14/2015,3242.34,3268.48,3193.98,3222.44,267204.53,24019075200
    1/15/2015,3224.07,3337.08,3207.54,3336.46,330610.53,28254624000
    1/16/2015,3343.6,3400.32,3340.49,3376.5,392253.89,33987676800
    1/19/2015,3189.73,3262.21,3095.07,3116.35,409885.98,40109878400
    1/20/2015,3114.56,3190.25,3100.48,3173.05,416295.2,35708080000
    1/21/2015,3189.09,3337,3178.34,3323.61,473758.66,41095603200
    1/22/2015,3327.32,3352.38,3293.98,3343.34,407874.08,35338297600
    1/23/2015,3357.1,3406.79,3328.29,3351.76,420979.52,36624924800
    1/26/2015,3347.26,3384.8,3321.31,3383.18,358427.46,31754099200
    1/27/2015,3389.85,3390.22,3290.22,3352.96,418298.88,37451753600
    1/28/2015,3325.72,3354.8,3294.66,3305.74,341564.29,30192710400
    1/29/2015,3259,3286.79,3234.24,3262.3,296424.51,27465862400
    1/30/2015,3273.75,3288.5,3210.31,3210.36,284265.66,25831254400
    2/2/2015,3148.14,3175.13,3122.57,3128.3,266849.97,25086163200
    2/3/2015,3156.09,3207.94,3129.73,3204.91,283355.97,24819216000
    2/4/2015,3212.82,3238.98,3171.14,3174.13,290155.17,24909808000
    2/5/2015,3251.21,3251.21,3135.82,3136.53,348266.94,30613929600
    2/6/2015,3120.09,3129.54,3052.94,3075.91,266502.78,24674966400
    2/9/2015,3063.51,3119.03,3049.11,3095.12,240719.68,20610838400
    2/10/2015,3090.49,3142.1,3084.25,3141.59,225084.91,19381713600
    2/11/2015,3145.76,3166.42,3139.05,3157.7,210862.54,17284009600
    2/12/2015,3157.96,3181.77,3134.24,3173.42,229691.58,19459230400
    2/13/2015,3186.81,3237.16,3182.79,3203.83,293017.66,26129043200
    2/16/2015,3206.14,3228.85,3195.88,3222.36,265950.69,22379742400
    2/17/2015,3230.88,3255.73,3230.77,3246.91,263340.05,22833262400
    2/25/2015,3256.48,3257.22,3215.55,3228.84,265143.34,23334809600
    2/26/2015,3222.15,3300.62,3202.19,3298.36,334347.49,30126387200
    2/27/2015,3296.83,3324.55,3291.01,3310.3,335019.58,29916371200
    3/2/2015,3332.72,3336.76,3298.67,3336.28,410259.55,34644566400
    3/3/2015,3317.7,3317.7,3260.43,3263.05,441593.47,38204460800
    3/4/2015,3264.18,3286.59,3250.48,3279.53,346789.76,29363952000
    3/5/2015,3264.09,3266.64,3221.67,3248.48,373580,32066358400
    3/6/2015,3248.04,3266.93,3234.53,3241.19,328344.16,28291577600
    3/9/2015,3224.31,3307.7,3198.37,3302.41,359927.52,32149542400
    3/10/2015,3289.09,3309.92,3277.1,3286.07,329955.97,28581756800
    3/11/2015,3289.59,3325.05,3278.47,3290.9,327573.06,28298553600
    3/12/2015,3314.81,3360.05,3300.49,3349.32,407192.38,35729510400
    3/13/2015,3359.49,3391.25,3352.15,3372.91,374041.41,32841014400
    3/16/2015,3391.16,3449.3,3377.09,3449.3,479355.3,39913241600
    3/17/2015,3469.6,3504.12,3459.69,3502.85,601500.67,52093952000
    3/18/2015,3510.5,3577.66,3503.85,3577.3,617366.98,54521715200
    3/19/2015,3576.02,3600.68,3546.84,3582.27,612249.66,53734662400
    3/20/2015,3587.08,3632.34,3569.38,3617.32,651771.97,51666166400
    3/23/2015,3640.1,3688.25,3635.49,3687.73,661574.59,53606284800
    3/24/2015,3692.57,3715.87,3600.7,3691.41,754884.74,63955468800
    3/25/2015,3680.95,3693.15,3634.56,3660.73,645498.94,52188633600
    3/26/2015,3641.94,3707.32,3615.01,3682.1,619515.58,48864720000
    3/27/2015,3686.13,3710.48,3656.83,3691.1,509298.46,40894515200
    3/30/2015,3710.61,3795.94,3710.61,3786.57,692125.38,56470233600
    3/31/2015,3822.99,3835.57,3737.04,3747.9,721294.98,56167603200
    4/1/2015,3748.34,3817.08,3742.21,3810.29,592418.3,44745830400
    4/2/2015,3827.69,3835.45,3775.89,3825.78,632028.93,47929968000
    4/3/2015,3803.38,3864.41,3792.21,3863.93,635651.33,47303331200
    4/7/2015,3899.42,3961.67,3891.73,3961.38,746424,57044755200
    4/8/2015,3976.53,4000.22,3903.65,3994.81,839159.3,61808544000
    4/9/2015,4006.13,4016.4,3900.03,3957.53,816710.91,58517683200
    4/10/2015,3947.49,4040.35,3929.32,4034.31,668504.19,48428361600
    4/13/2015,4072.72,4128.07,4057.29,4121.71,781667.33,58981420800
    4/14/2015,4125.78,4168.35,4091.26,4135.56,814645.18,61068352000
    4/15/2015,4135.65,4175.49,4069.01,4084.16,773125.89,61300582400
    4/16/2015,4055.92,4195.31,4031.24,4194.82,712082.43,55124294400
    4/17/2015,4254.72,4317.22,4238.91,4287.3,915633.02,70170617600
    4/20/2015,4301.35,4356,4190.68,4217.08,1147600.64,85713280000
    4/21/2015,4212.19,4294.38,4188.57,4293.62,862447.81,63447065600
    4/22/2015,4304.6,4400.19,4297.95,4398.49,976876.99,68030508800
    4/23/2015,4414.48,4444.41,4358.84,4414.51,963024.96,66734464000
    4/24/2015,4355.95,4416.38,4318.12,4393.69,916872.96,62855500800
    4/27/2015,4441.93,4529.73,4441.93,4527.4,975242.11,67108851200
    4/28/2015,4527.63,4572.39,4432.9,4476.21,1061172.1,76767641600
    4/29/2015,4446.12,4499.94,4398.64,4476.62,752401.79,51983420800
    4/30/2015,4483.01,4507.34,4441.05,4441.65,774349.18,52672796800
    5/4/2015,4441.34,4487.57,4387.43,4480.46,717540.8,49417340800
    5/5/2015,4479.85,4488.87,4282.24,4298.71,805566.08,57285862400
    5/6/2015,4311.64,4376.35,4187.37,4229.27,716536.19,48173299200
    5/7/2015,4197.9,4213.76,4108.01,4112.21,540206.27,39456665600
    5/8/2015,4152.98,4206.86,4099.04,4205.92,559648.64,39742809600
    5/11/2015,4231.27,4334.88,4187.82,4333.58,715246.59,48875052800
    5/12/2015,4342.37,4402.31,4317.98,4401.22,793463.74,52186640000
    5/13/2015,4402.38,4415.63,4342.48,4375.76,780754.94,51049046400
    5/14/2015,4372.82,4397.75,4329.04,4378.31,669882.3,44907792000
    5/15/2015,4366.82,4366.82,4278.55,4308.69,665965.63,43970620800
    5/18/2015,4277.9,4324.83,4260.51,4283.49,594559.49,38005744000
    5/19/2015,4285.78,4418.4,4285.78,4417.55,693812.61,43673523200
    5/20/2015,4434.98,4520.54,4432.28,4446.29,806080.51,51410620800
    5/21/2015,4456.44,4530.48,4438.26,4529.42,729080.64,46499651200
    5/22/2015,4584.98,4658.27,4562.99,4657.6,1007173.25,65559129600
    5/25/2015,4660.08,4814.67,4656.83,4813.8,1079295.62,68246137600
    5/26/2015,4854.85,4911.69,4779.08,4910.9,1138509.31,70489280000
    5/27/2015,4932.85,4958.16,4857.06,4941.71,1116261.76,68116537600
    5/28/2015,4943.74,4986.5,4614.24,4620.27,1247926.02,78296460800
    5/29/2015,4603.46,4698.19,4431.56,4611.74,955365.57,61126240000
    6/1/2015,4633.1,4829.5,4615.23,4828.74,934455.49,59338905600
    6/2/2015,4844.7,4911.57,4797.55,4910.53,998745.73,62374809600
    6/3/2015,4924.38,4942.06,4822.44,4909.98,1010179.9,61145382400
    6/4/2015,4912.94,4947.96,4647.41,4947.1,1052270.21,67495238400
    6/5/2015,5016.09,5051.63,4898.07,5023.1,1232300.67,77224083200
    6/8/2015,5045.69,5146.95,4997.48,5131.88,1309924.48,85503507200
    6/9/2015,5145.98,5147.45,5042.96,5113.53,1150808.58,72989382400
    6/10/2015,5049.2,5164.16,5001.49,5106.04,1005432.26,59696902400
    6/11/2015,5101.44,5122.46,5050.76,5121.59,974665.79,56399052800
    6/12/2015,5143.34,5178.19,5103.4,5166.35,1060164.61,62562784000
    6/15/2015,5174.42,5176.79,5048.74,5062.99,1064987.71,63780396800
    6/16/2015,5004.41,5029.68,4842.1,4887.43,895413.95,55080140800
    6/17/2015,4890.55,4983.66,4767.22,4967.9,830252.8,53710118400
    6/18/2015,4942.52,4966.77,4780.87,4785.36,785831.81,50744089600
    6/19/2015,4689.93,4744.08,4476.5,4478.36,685373.82,45268963200
    6/23/2015,4471.61,4577.94,4264.77,4576.49,693468.22,47352614400
    6/24/2015,4604.58,4691.77,4552.13,4690.15,814979.9,54300371200
    6/25/2015,4711.76,4720.7,4483.55,4527.78,865372.61,57279750400
    6/26/2015,4399.93,4456.9,4139.53,4192.87,787653.44,56521785600
    6/29/2015,4289.77,4297.47,3875.05,4053.03,894482.3,67378636800
    6/30/2015,4006.75,4279.97,3847.88,4277.22,924607.87,70917664000
    7/1/2015,4214.15,4317.05,4043.37,4053.7,819002.62,59876940800
    7/2/2015,4058.62,4080.39,3795.25,3912.77,724185.79,58601561600
    7/3/2015,3793.71,3927.13,3629.56,3686.92,634413.25,54816313600
    7/6/2015,3975.21,3975.21,3653.04,3775.91,926339.58,83113926400
    7/7/2015,3654.78,3750.57,3585.4,3727.12,767003.58,69881868800
    7/8/2015,3467.4,3599.25,3421.53,3507.19,698169.92,68035692800
    7/9/2015,3432.45,3748.48,3373.54,3709.33,660375.23,65691462400
    7/10/2015,3707.46,3959.22,3677.43,3877.8,679294.78,58636422400
    7/13/2015,3918.99,4030.19,3858.64,3970.39,781804.54,64348902400
    7/14/2015,3958.37,4035.43,3855.56,3924.49,830071.94,67055878400
    7/15/2015,3874.97,3914.27,3741.25,3805.7,700536.51,60130131200
    7/16/2015,3758.5,3877.51,3688.44,3823.18,569858.94,49225619200
    7/17/2015,3831.42,3994.48,3814.15,3957.35,593067.01,48172627200
    7/20/2015,3948.42,4021.33,3927.12,3992.11,688255.55,53910668800
    7/21/2015,3939.9,4041.82,3912.8,4017.67,646416.83,50428803200
    7/22/2015,3996.43,4042.34,3960.86,4026.04,678831.94,52073222400
    7/23/2015,4022.27,4132.61,4019.04,4123.92,743531.9,56358598400
    7/24/2015,4124.75,4184.45,4044.83,4070.91,843022.08,62742483200
    7/27/2015,3985.57,4051.16,3720.44,3725.56,721298.11,55600326400
    7/28/2015,3573.14,3762.53,3537.36,3663,685057.54,56333004800
    7/29/2015,3689.82,3792.07,3612.06,3789.17,557491.97,43435209600
    7/30/2015,3773.79,3844.37,3685.96,3705.77,615977.92,45794323200
    7/31/2015,3655.67,3729.51,3620.17,3663.73,460472.26,35095574400
    8/3/2015,3614.99,3648.94,3549.5,3622.91,445991.58,36396873600
    8/4/2015,3621.86,3757.03,3601.29,3756.54,464036.26,36290166400
    8/5/2015,3745.65,3782.35,3676.39,3694.57,483850.27,36642297600
    8/6/2015,3625.5,3710.57,3614.74,3661.54,357515.14,27407465600
    8/7/2015,3692.61,3756.74,3686.3,3744.2,445485.02,34075718400
    8/10/2015,3786.03,3943.62,3775.85,3928.42,652622.02,49730432000
    8/11/2015,3928.81,3970.34,3891.18,3927.91,712289.92,53892345600
    8/12/2015,3881.23,3937.77,3871.14,3886.32,597050.24,44268828800
    8/13/2015,3869.91,3955.79,3838.16,3954.56,578685.5,43007331200
    8/14/2015,3976.41,4000.68,3939.84,3965.34,647466.5,46798822400
    8/17/2015,3947.84,3994.54,3907.4,3993.67,626327.68,46043206400
    8/18/2015,3999.13,4006.34,3743.39,3748.16,722467.26,54377081600
    8/19/2015,3646.8,3811.43,3558.38,3794.11,599513.28,47539622400
    8/20/2015,3754.57,3788.01,3663.61,3664.29,501195.01,39006307200
    8/21/2015,3609.96,3652.84,3490.54,3507.74,450616.48,36992048000
    8/24/2015,3373.48,3388.36,3191.88,3209.91,358818.88,33467180800
    8/25/2015,3004.13,3123.03,2947.94,2964.97,358735.78,35232512000
    8/26/2015,2980.79,3092.04,2850.71,2927.29,461788.99,46669964800
    8/27/2015,2978.03,3085.42,2906.49,3083.59,404289.31,40030838400
    8/28/2015,3125.26,3235.84,3102.95,3232.35,474631.01,44313692800
    8/31/2015,3203.56,3207.86,3109.16,3205.99,431068.61,39743139200
    9/1/2015,3157.83,3180.33,3053.74,3166.62,420411.62,43243248000
    9/2/2015,3027.68,3194.48,3019.09,3160.17,423262.37,43817014400
    9/7/2015,3149.38,3217.58,3066.3,3080.42,302689.73,29646812800
    9/8/2015,3054.44,3174.71,3011.12,3170.45,263910.38,25541547200
    9/9/2015,3182.55,3256.74,3165.7,3243.09,412991.42,37532796800
    9/10/2015,3190.55,3243.28,3178.9,3197.89,299581.09,27326176000
    9/11/2015,3189.48,3223.76,3163.45,3200.23,252769.47,22455782400
    9/14/2015,3221.17,3229.48,3049.23,3114.8,373576.8,34663116800
    9/15/2015,3043.8,3081.7,2983.92,3005.17,243904.59,24919444800
    9/16/2015,2998.04,3182.93,2983.54,3152.26,281992.26,27752451200
    9/17/2015,3131.98,3204.7,3085.31,3086.06,337393.28,31760288000
    9/18/2015,3100.28,3122.05,3070.34,3097.92,218442.43,20917539200
    9/21/2015,3072.09,3159.88,3060.86,3156.54,259796.67,23989736000
    9/22/2015,3161.32,3213.48,3152.48,3185.62,305071.33,27478614400
    9/23/2015,3137.72,3164.04,3104.74,3115.89,257560.03,23632267200
    9/24/2015,3126.49,3151.16,3109.69,3142.69,231369.06,21288772800
    9/25/2015,3130.85,3149.95,3063,3092.35,248971.12,23626387200
    9/28/2015,3085.57,3103.07,3042.31,3100.76,166422.4,15672753600
    9/29/2015,3055.22,3068.3,3021.16,3038.14,169686.59,16322267200
    9/30/2015,3052.84,3073.3,3039.74,3052.78,156569.2,14664244800
    10/8/2015,3156.07,3172.28,3133.13,3143.36,258830.34,23427604800
    10/9/2015,3146.64,3192.72,3137.79,3183.15,256379.12,23485144000
    10/12/2015,3193.54,3318.71,3188.41,3287.66,435541.02,38629472000
    10/13/2015,3262.16,3298.63,3253.25,3293.23,334806.11,29715312000
    10/14/2015,3280.02,3307.32,3256.25,3262.44,330277.5,29507772800
    10/15/2015,3255.03,3338.3,3254.39,3338.07,362565.57,31628384000
    10/16/2015,3358.3,3393.02,3334.85,3391.35,459447.81,39546057600
    10/19/2015,3401.63,3423.4,3355.57,3386.7,453303.62,37811219200
    10/20/2015,3377.55,3425.52,3357.86,3425.33,383582.53,31897376000
    10/21/2015,3428.56,3447.26,3265.44,3320.68,518509.22,45845542400
    10/22/2015,3292.29,3373.78,3282.99,3368.74,375452,32373932800
    10/23/2015,3377.55,3422.02,3360.22,3412.43,425263.07,34737286400
    10/26/2015,3448.65,3457.52,3402,3429.58,453942.5,36556086400
    10/27/2015,3409.14,3441.57,3332.62,3434.34,408887.23,32817276800
    10/28/2015,3417.01,3439.76,3367.23,3375.2,361656.19,29352329600
    10/29/2015,3387.77,3411.71,3362.51,3387.32,294508.42,23567601600
    10/30/2015,3380.28,3417.2,3346.59,3382.56,307266.78,24359512000
    11/2/2015,3337.58,3391.06,3322.31,3325.08,286019.33,23095113600
    11/3/2015,3330.32,3346.27,3302.18,3316.7,244360.56,19289744000
    11/4/2015,3325.62,3459.65,3325.62,3459.64,426104.38,33907875200
    11/5/2015,3459.22,3585.66,3455.53,3522.82,678674.62,55325497600
    11/6/2015,3514.44,3596.38,3508.83,3590.03,543282.18,42916704000
    11/9/2015,3588.5,3673.76,3588.5,3646.88,636184.06,50301670400
    11/10/2015,3617.4,3669.53,3607.89,3640.49,560055.1,42974659200
    11/11/2015,3635,3654.88,3605.62,3650.25,467822.21,36097267200
    11/12/2015,3656.82,3659.31,3603.23,3632.9,482832.61,36171760000
    11/13/2015,3600.76,3632.56,3564.81,3580.84,468668.64,34587094400
    11/16/2015,3522.46,3607.61,3519.42,3606.96,369421.86,27618704000
    11/17/2015,3629.98,3678.27,3598.07,3604.8,521520.35,38357545600
    11/18/2015,3605.06,3617.07,3558.7,3568.47,392338.75,29758073600
    11/19/2015,3573.78,3618.21,3561.04,3617.06,328442.62,24791558400
    11/20/2015,3620.79,3640.53,3607.92,3630.5,413910.88,31080198400
    11/23/2015,3630.87,3654.75,3598.87,3610.32,414148.22,31599747200
    11/24/2015,3602.89,3616.48,3563.1,3616.11,327758.53,24881051200
    11/25/2015,3614.07,3648.37,3607.52,3647.93,380802.91,27302486400
    11/26/2015,3659.57,3668.38,3629.86,3635.55,426247.42,30676160000
    11/27/2015,3616.54,3621.9,3412.43,3436.3,464311.26,35428752000
    11/30/2015,3433.86,3470.37,3327.81,3445.4,387503.65,30419788800
    12/1/2015,3442.44,3483.41,3417.54,3456.31,330256.74,25239075200
    12/2/2015,3450.28,3538.85,3427.66,3536.91,369183.04,30149148800
    12/3/2015,3525.73,3591.73,3517.23,3584.82,338859.1,28111123200
    12/4/2015,3558.15,3568.97,3510.41,3524.99,315150.24,25173641600
    12/7/2015,3529.81,3543.95,3506.62,3536.93,277503.71,20830257600
    12/8/2015,3518.65,3518.65,3466.79,3470.07,296529.98,22436731200
    12/9/2015,3462.58,3495.7,3454.88,3472.44,263710.98,19569884800
    12/10/2015,3469.81,3503.65,3446.27,3455.5,276368.22,20042752000
    12/11/2015,3441.6,3455.55,3410.92,3434.58,243081.74,18290888000
    12/14/2015,3403.51,3521.78,3399.28,3520.67,277813.28,21537462400
    12/15/2015,3518.13,3529.96,3496.85,3510.35,276274.94,20047134400
    12/16/2015,3522.09,3538.69,3506.29,3516.19,265288.64,19348230400
    12/17/2015,3533.63,3583.41,3533.63,3580,381439.62,28385648000
    12/18/2015,3574.94,3614.7,3568.16,3578.96,365385.82,27370790400
    12/21/2015,3568.58,3651.06,3565.75,3642.47,398316.96,29984928000
    12/22/2015,3645.99,3652.64,3616.87,3651.77,360846.05,26117875200
    12/23/2015,3653.28,3684.57,3633.02,3636.09,419902.91,29820179200
    12/24/2015,3631.31,3640.22,3572.28,3612.49,315421.25,22778521600
    12/25/2015,3614.05,3635.26,3601.74,3627.91,274660.06,19845112000
    12/28/2015,3635.77,3641.59,3533.78,3533.78,369042.82,26998326400
    12/29/2015,3528.4,3547.13,3515.52,3518.76,103096.7,7505131100
    View Code

    3.测试代码

    a

    # coding:utf-8
    from  matplotlib import pyplot as plt
    import numpy as np
    from matplotlib import markers
    
    open_, close_ = np.loadtxt('000001.csv', delimiter=',', skiprows=1, unpack=True, usecols=(1, 4))
    
    change = close_ - open_
    
    yesterday = change[:-1]
    today = change[1:]
    plt.scatter(yesterday, today, s=100, c='blue', marker=markers.CARETDOWNBASE, alpha=0.5)
    plt.plot()
    plt.show()
    
    open_, high = np.loadtxt('000001.csv', delimiter=',', skiprows=1, usecols=(1, 2), unpack=True)
    
    diff = high - open_
    yesterday = diff[:-1]
    today = diff[1:]
    plt.scatter(today, yesterday, s=100, c='blue', marker=markers.CARETDOWNBASE, alpha=0.5)
    plt.plot()
    plt.show()

    b

    # coding:utf-8
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.dates as mdates
    
    x = np.linspace(-10, 10, 100)
    y = x ** 2
    plt.plot(x, y)
    plt.show()
    
    date, open, close = np.loadtxt('000001.csv', delimiter=',', converters={0: mdates.strpdate2num('%m/%d/%Y')}, skiprows=1,
                                   usecols=(0, 1, 4), unpack=True)
    
    plt.plot(date, close)  # 默认时间无法正确显示
    plt.plot_date(date, close)  # 默认点状
    plt.show()
    
    plt.plot_date(date, close, 'go')
    plt.plot_date(date, close, 'r--')
    plt.show()
    
    plt.plot(date, close, color='green', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=12)
    plt.show()
    
    x = np.linspace(-np.pi, np.pi, 100)
    y = np.sin(x)
    plt.plot(x, y)
    plt.show()
    
    date, open_, high, low, close_ = np.loadtxt('000001.csv', delimiter=',',
                                                converters={0: mdates.strpdate2num('%m/%d/%Y')}, skiprows=1,
                                                usecols=(0, 1, 2, 3, 4), unpack=True)
    plt.plot(date, open_)
    plt.plot(date, high)
    plt.plot(date, low)
    plt.plot(date, close_)
    plt.show()

    c

    # coding:utf-8
    
    from matplotlib import pyplot as plt
    import numpy as np
    
    y = [25, 32, 19, 24, 28]
    x = np.arange(5)
    plt.bar(left=x, height=y, width=0.5, color='red')
    plt.plot()
    plt.show()
    
    plt.barh(bottom=x, width=y, height=0.5)
    plt.plot()
    plt.show()
    
    y1 = np.random.randint(1, 100, 5)
    y2 = np.random.randint(1, 100, 5)
    plt.bar(left=x, height=y1, width=0.3, color='red')
    plt.bar(left=x + 0.3, height=y2, width=0.3, color='blue')
    plt.plot()
    plt.show()
    
    plt.bar(left=x, height=y1, width=0.3, color='red')
    plt.bar(left=x, bottom=y1, height=y2, width=0.3, color='blue')
    plt.plot()
    plt.show()

     d

    # coding:utf-8
    
    from matplotlib import pyplot as plt
    import numpy as np
    
    mu = 100
    sigma = 20
    x = mu + sigma * np.random.randn(20000)
    
    plt.hist(x, bins=50, color='green', normed=False)
    plt.show()
    
    x = np.random.randn(1000) + 2
    y = np.random.randn(1000) + 3
    plt.hist2d(x, y, bins=40)
    plt.show()

    e

    # coding:utf-8
    
    from matplotlib import pyplot as plt
    import numpy as np
    
    labels = ['A', 'B', 'C', 'D']
    fracs = [15, 30, 45, 10]
    
    explod = [0, 0, 0, 0.1]  # 设置突出部分
    
    plt.axes(aspect=1)  # 设置坐标轴1:1
    
    plt.pie(x=fracs, labels=labels, autopct='%.0f%%', explode=explod,shadow=True)
    
    plt.show()

    f

    # coding:utf-8
    
    from matplotlib import pyplot as plt
    import numpy as np
    
    np.random.seed(100)
    
    data = np.random.normal(size=(1000, 4), scale=1)
    labels = ['A', 'B', 'C', 'D']
    plt.boxplot(data, labels=labels)
    
    plt.show()

     4.相关链接

    marker属性

    matplotlib

    numpy

     

     5.部分结果

     

     

     

     

     

  • 相关阅读:
    LeetCode 295. Find Median from Data Stream (堆)
    LeetCode 292. Nim Game(博弈论)
    《JavaScript 模式》读书笔记(4)— 函数2
    《JavaScript 模式》读书笔记(4)— 函数1
    《JavaScript 模式》读书笔记(3)— 字面量和构造函数3
    《JavaScript 模式》读书笔记(3)— 字面量和构造函数2
    《JavaScript 模式》读书笔记(3)— 字面量和构造函数1
    《JavaScript 模式》读书笔记(2)— 基本技巧3
    《JavaScript 模式》读书笔记(2)— 基本技巧2
    《JavaScript 模式》读书笔记(2)— 基本技巧1
  • 原文地址:https://www.cnblogs.com/jasonhaven/p/7625396.html
Copyright © 2011-2022 走看看