zoukankan      html  css  js  c++  java
  • 数据分析基础之Linalg的使用

    Linear algebra

     

    简介

    When SciPy is built using the optimized ATLAS LAPACK and BLAS libraries, it has very fast linear algebra capabilities.

    If you dig deep enough, all of the raw lapack and blas libraries are available for your use for even more speed.

    All of these linear algebra routines expect an object that can be converted into a 2-dimensional array. The output of these routines is also a two-dimensional array.

    1.模块文档

    View Code
    View Code

     

    2.可用方法

    'bench','cholesky','cond','det','division','eig','array','eigh','eigvals','eigvalsh','info','inv','lapack_lite','linalg','lstsq','matrix_power','matrix_rank','multi_dot','norm','pinv','print_function','qr','slogdet','solve','svd','tensorinv','tensorsolve','test'

    eig : eigenvalues and right eigenvectors of general arrays
    eigvalsh : eigenvalues of symmetric or Hermitian arrays.
    eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays.

     

    3.常用方法

    首先导入相关模块

    import numpy as np
    from scipy import linalg as LA
    #or
    #from numpy import linalg as LA

    3.1求数组的行列式:det

     

    3.2求方阵的特征值、特征向量:eig

     

     

    3.3求方阵的逆矩阵::inv

     

     

    3.4求解线性方程组:solve

    Solve the system of equations x0 x1 9 and x0 x1 8:

     

     

    3.5一个方阵的整数次幂:matrix_power

     

     

     

    3.6计算在一个函数调用两个或两个以上的阵列的点积:multi_dot

     

    4.官网文档

    https://docs.scipy.org/doc/numpy/reference/routines.linalg.html

     

  • 相关阅读:
    联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
    P5518
    快速除法 / 取模
    P6860
    spoj LCMSUM
    虚树 学习笔记
    长链剖分 学习笔记
    CF526G
    P4292
    01 分数规划(water)
  • 原文地址:https://www.cnblogs.com/jasonhaven/p/7780769.html
Copyright © 2011-2022 走看看