String painter
Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3935 Accepted Submission(s): 1833
Problem Description
There are two strings A and B with equal length. Both strings are made up of lower case letters. Now you have a powerful string painter. With the help of the painter, you can change a segment of characters of a string to any other character you want. That is, after using the painter, the segment is made up of only one kind of character. Now your task is to change A to B using string painter. What’s the minimum number of operations?
Input
Input contains multiple cases. Each case consists of two lines:
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
The first line contains string A.
The second line contains string B.
The length of both strings will not be greater than 100.
Output
A single line contains one integer representing the answer.
Sample Input
zzzzzfzzzzz
abcdefedcba
abababababab
cdcdcdcdcdcd
Sample Output
6
7
2017.3.18复习,感觉这道题的dp设计很巧妙,还是没有吃透。。。
题意:给定两个等长字符串A、B,一次操作可以将A的任意一段连续的字符变为同一任意字符,问最少多少次操作可以将A变为B。
专门挑的区间dp的题,但是然并卵。。。没思路啊。。。看题解。。。
思路:dp[i][j]:将空串变为B[i-->j]所需要的最少次数。先求出所有dp[i][j],即求出将空串变为B[i-->j]所需最少次数。那么根据dp数组求出最终答案就很容易:
1.ans[k]=dp[1][k]
2.if(A[k]==B[k]) ans[k]=ans[k-1]; (ans[0]==0)
else ans[k]=min(ans[k],ans[t]+ans[t+1][k]); (1=<t<k)
求dp[i][j]:
枚举起点i、终点j、遍历[i+1,j]区间k
for(int j=1;j<=len;j++) //end
{
for(int i=j;i>0;i--) //begin
{
dp[i][j]=dp[i+1][j]+1;
for(int k=i+1;k<=j;k++)
if(B[i]==B[k])
dp[i][j]=min(dp[i][j],dp[i][k-1]+dp[k+1][j]);
}
}
#include<iostream> #include<cstdio> #include<cstring> using namespace std; char A[105],B[105]; int dp[105][105]; int ans[105]; int main() { while(scanf("%s%s",A+1,B+1)!=EOF) { memset(dp,0,sizeof(dp)); memset(ans,0,sizeof(ans)); int len=strlen(B+1); for(int j=1;j<=len;j++) //end { for(int i=j;i>0;i--) //begin { dp[i][j]=dp[i+1][j]+1; for(int k=i+1;k<=j;k++) //一定是从左往右找重的 if(B[i]==B[k]) dp[i][j]=min(dp[i][j],dp[i][k-1]+dp[k+1][j]); } } for(int i=1;i<=len;i++) { ans[i]=dp[1][i]; if(A[i]==B[i]) ans[i]=ans[i-1]; else { for(int j=1;j<i;j++) ans[i]=min(ans[i],ans[j]+dp[j+1][i]); } } printf("%d ",ans[len]); } return 0; }