zoukankan      html  css  js  c++  java
  • CodeForces

    D. Points and Powers of Two

    time limit per test
    4 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    There are n distinct points on a coordinate line, the coordinate of i-th point equals to xi. Choose a subset of the given set of points such that the distance between each pair of points in a subset is an integral power of two. It is necessary to consider each pair of points, not only adjacent. Note that any subset containing one element satisfies the condition above. Among all these subsets, choose a subset with maximum possible size.

    In other words, you have to choose the maximum possible number of points xi1,xi2,,xim such that for each pair xij, xik it is true that |xijxik|=2d where d is some non-negative integer number (not necessarily the same for each pair of points).

    Input

    The first line contains one integer n (1n2105) — the number of points.

    The second line contains n pairwise distinct integers x1,x2,,xn (109xi109) — the coordinates of points.

    Output

    In the first line print m — the maximum possible number of points in a subset that satisfies the conditions described above.

    In the second line print m integers — the coordinates of points in the subset you have chosen.

    If there are multiple answers, print any of them.

    Examples

    Input

    6
    3 5 4 7 10 12

    Output

    3
    7 3 5

    Input

    5
    -1 2 5 8 11

    Output

    1
    8

    Note

    In the first example the answer is [7,3,5]. Note, that |73|=4=22, |75|=2=21 and |35|=2=21. You can't find a subset having more points satisfying the required property.

    思路:列举发现选出的数字集合只能是三个而且满足:

    a    a+2^n    a+2^(n+1)
    

      

    ac代码:

    // #include<bits/stdc++.h>
    #include <cstdio>
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <queue> //priority_queue
    #include <map>
    #include <set> //multiset set<int,greater<int>>大到小
    #include <vector> // vector<int>().swap(v);清空释放内存
    #include <stack>
    #include <cmath> // auto &Name : STLName  Name.
    #include <utility>
    #include <sstream>
    #include <string> //__builtin_popcount(ans);//获取某个数二进制位1的个数
    using namespace std;
    #define rep(i,a,n) 	for(int i=a;i<=n;i++)
    #define per(i,a,n) 	for(int i=n;i>=a;i--)
    #define read(x) 	scanf("%d",&x)
    #define Read(x,y) 	scanf("%d%d",&x,&y)
    #define write(x) 	printf("%d
    ",x)
    #define INF 0x3f3f3f3f
    #define MAX_N 200005
    typedef long long ll;
    
    ll a[MAX_N];
    set<ll> s;
    
    int main()
    {	
    	int n;
    	scanf("%d",&n);
    	for(int i=0;i<n;i++){
    		scanf("%lld",&a[i]);
    		s.insert(a[i]);
    	}
    	for(int i=0;i<n;i++){
    		for(ll j=1;j<2e9;j<<=1){
    			if(s.count(a[i]+j)&&s.count(a[i]+j*2))
    			{
    				printf("3
    ");
    				printf("%lld %lld %lld
    ",a[i],a[i]+j,a[i]+j*2);
    				return 0;
    			}
    		}
    	}
    	for(int i=0; i<n; i++)
        {
            for(ll j=1; j<=2e9; j<<=1)
                if(s.count(a[i]+j))
                {
                    printf("3
    ");
                    printf("%lld %lld
    ",a[i],a[i]+j);
    				return 0;
                }
        }
        printf("1
    ");
        printf("%lld
    ",a[0]);
    
    	return 0;
    }
    

      

  • 相关阅读:
    80x86的保护模式
    计算机二进制的表示
    操作系统基本知识(一)
    记录一次在安装双系统的过程(先有debian, 后加windows 8.1)
    LitePal + Gson + Volley的ORM框架尝试方案
    如何使用DDMS Heap查看Android应用内存情况
    测试驱动开发的第一个例子---我的毕业设计
    策略模式的孪生兄弟---状态模式
    面试常备---栈和队列总结篇
    面试常备题---二叉树总结篇
  • 原文地址:https://www.cnblogs.com/jaszzz/p/12774867.html
Copyright © 2011-2022 走看看