学习计时:共xxx小时 读书: 代码: 作业: 博客: |
一、学习目标 |
1. 理解二进制在计算机中的重要地位
2. 掌握布尔运算在C语言中的应用
3. 理解有符号整数、无符号整数、浮点数的表示
4. 理解补码的重要性
5. 能避免C语言中溢出,数据类型转换中的陷阱和可能会导致的漏洞
|
二、学习资源 |
(提示:可选项,如有其他相关资源请在此说明): 1. 教材:第二章《信息的表示和处理》,详细学习指导见这。 2. 课程资料:https://www.shiyanlou.com/courses/413 实验三,课程邀请码:W7FQKW4Y 3. 教材中代码运行、思考一下,读代码的学习方法见这。
|
三、学习方法 |
(提示:为提高学生的学习效果,请在此处为学生提出微课程学习的具体要求或建议)
1. 进度很重要:必须跟上每周的进度,阅读,练习,问答,项目。我会认真对待每一位同学,请你不要因为困难半途而废。 2. 问答很重要:遇到知识难点请多多提问,这是你的权利更是您对自己负责的义务。问答到博客园讨论小组:http://group.cnblogs.com/103791/
3. 实践很重要:解决书中习题,实践书中实例,完成每周项目,才算真的消化了这本好书。通过实验楼环境或自己安装的虚拟机在实践中进行学习
4. 实验报告很重要:详细记录你完成项目任务的思路,获得老师点评和帮助自己复习。学习完成后在博客园中(http://www.cnblogs.com/)把学习过程通过博客发表,博客标题“信息安全系统设计基础第三周学习总结”
|
四、学习任务 |
(提示:请将要求学生完成的任务、测验或思考题列在此处) 1. 阅读教材,完成课后练习(书中有参考答案) 2. 考核:练习题把数据变换一下 3. 加分题:课后作业最多两人一组,互相不能重复,1星题目每人最多加一分,2星题目每人最多加二分,3星题目每人最多加三分,4星题目每人最多加四分。
|
五、后续学习预告(可选): |
教材第三章《程序的机器级表示》 |
六、学习过程 |
(提示:此处由学生填写,学习过程,学习笔记,代码编译,运行结果,思考等)
信息的表示和处理1、数字的三种表示无符号数:传统的二进制表示法,表示大于或等于零的数字 2、进制转化(1)x=2^n转化为十六进制将x写成x=2^n的形式,令n=i+4j,x的十六进制表示为:开头为2^i的值,后面补j个0。 (2)十进制转化为十六进制十进制数x反复除以16,得十六进制数 (3)十六进制转化为十进制十六进制数x反复乘以16,得十进制数 3、字和字节顺序字长:一个字长指明整数和指针数据的标称大小。字长决定最重要的系统参数就是虚拟地址空间的最大大小。对一个字长为w位的机器而言,虚拟地址的范围是0~2^w-1,程序最多访问2^w个字节。 4、布尔代数(1)位向量的运算:按位运算(2)位向量的应用:表示有限集合掩码表示的是设置为有效信号的集合。 (3)位级运算|:或 (4)逻辑运算逻辑运算符:||(或)、&&(与)、!(非) (5)移位运算左移k位:丢弃最高位的k位,右端补k个0 5、补码编码补码形式是最常见的有符号数的计算机表示方式 6、有符号数和无符号数之间的转换处理同样字长的有符号数和无符号数之间相互转换的一般规则:数值可能会改变,但是位模式不变。 7、扩展数的位表示零扩展:将无符号数转换为更大的数在表示的开头添加0 8、截断数字截断数字:不用额外的位来扩展一个数值,而是减少表示一个数字的位数。 注意!!补码经过截断处理后的结果仍是补码,注意结果为负数时转化为十进制数9、使用无符号数的情况(1)把字仅仅看做是位的集合,并没有任何数字意义时 10、整数运算(1)无符号加法无符号运算可以被视为一种模运算形式,无符号加法等同于计算和摸上2^w,可以通过简单的丢弃x+y的w+1位表示的最高位,来计算这个数值。 (2)补码加法两个数的w位补码之和与无符号之和有完全相同的位级表示。大多数计算机用相同的机器指令来执行无符号或者有符号加法。 (3)补码的非对于范围-2^(w-1)≤x<-2^(w-1)内的x,补码的非运算如下: (4)无符号乘法两个数x、y相乘且x、y的位数为w,则结果的位数为2w。 (5)补码乘法同无符号乘法。 若为截断后的结果,则取结果的后w位作为计算结果。 (6)乘以常数对于某个常数K的表达式x*K生成代码,编译器会将K的二进制表示表达为一组0或1的交替的序列: [(0…0)(1…1)(0…0)…(1…1)] 注意!!(x<<0)的结果是x,而不是0(7)除以2的幂设x/K,令K=2^n, (8)关于整数运算的最后思考计算机执行的“整数”运算实际上是一种模运算形式; 11、浮点数(1)二进制小数将十进制小数转换为二进制小数 (2)IEEE浮点数表示表示形式为:V = (-1)^s * M * 2^E (3)浮点数的舍入有四种情况分别是:向偶数舍入(默认)、向零舍入、向下舍入、向上舍入。 (4)浮点运算浮点加法:不满足结合性、满足单调性 |
七、遇到的问题及解决 |
(提示:此处由学生填写,是重要的得分点,要写出遇到的问题和解决方案以及对出现问题的思考) 遇到的问题1、对课本练习题2.11中B的解释还是不太理解。
|
八、其他 |
(提示:此处由学生填写,灵感,领悟等)
|