zoukankan      html  css  js  c++  java
  • HDU 1710 Binary Tree Traversals

    Binary Tree Traversals
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    A binary tree is a finite set of vertices that is either empty or consists of a root r and two disjoint binary trees called the left and right subtrees. There are three most important ways in which the vertices of a binary tree can be systematically traversed or ordered. They are preorder, inorder and postorder. Let T be a binary tree with root r and subtrees T1,T2.

    In a preorder traversal of the vertices of T, we visit the root r followed by visiting the vertices of T1 in preorder, then the vertices of T2 in preorder.

    In an inorder traversal of the vertices of T, we visit the vertices of T1 in inorder, then the root r, followed by the vertices of T2 in inorder.

    In a postorder traversal of the vertices of T, we visit the vertices of T1 in postorder, then the vertices of T2 in postorder and finally we visit r.

    Now you are given the preorder sequence and inorder sequence of a certain binary tree. Try to find out its postorder sequence.
     

    Input

    The input contains several test cases. The first line of each test case contains a single integer n (1<=n<=1000), the number of vertices of the binary tree. Followed by two lines, respectively indicating the preorder sequence and inorder sequence. You can assume they are always correspond to a exclusive binary tree.
     

    Output

    For each test case print a single line specifying the corresponding postorder sequence.
     

    Sample Input

    9 1 2 4 7 3 5 8 9 6 4 7 2 1 8 5 9 3 6
     

    Sample Output

    7 4 2 8 9 5 6 3 1

    和小白里面的那题差不多,参考小白完成。

    真心佩服lrj,如此巧妙的代码让我受益匪浅啊。。。

    AC代码:

    #include <cstdio>
    #define MAX 1001
    
    void build(int n, int *s1, int *s2, int *s)
    {
        if(n <= 0)
            return;
        int p;
        for(int i=0; i < n; i++)
            if(s1[0] == s2[i])
    		{
                p = i;
    			break;
    		}
        build(p, s1 + 1, s2, s);
        build(n - p - 1, s1 + p + 1, s2 + p + 1, s + p);
        s[n - 1] = s1[0];
    }
    
    int main()
    {
        int s1[MAX],s2[MAX],ans[MAX];
        int n;
        while (scanf("%d", &n) != EOF)
        {
            for(int i=0; i<n; i++)
                scanf("%d", &s1[i]);
            for(int i=0; i<n; i++)
                scanf("%d", &s2[i]);
            build(n, s1, s2, ans);
            for(int i = 0; i < n - 1; i++)
                printf("%d ", ans[i]);
            printf("%d\n", ans[n - 1]);
        }
        return 0;
    }


  • 相关阅读:
    POJ 1269 Intersecting Lines(判断两条线段关系)
    POJ 3304 Segments(判断直线和线段相交)
    poj 1383 Labyrinth【迷宫bfs+树的直径】
    poj 2631 Roads in the North【树的直径裸题】
    poj 1985 Cow Marathon【树的直径裸题】
    hdoj 1596 find the safest road【最短路变形,求最大安全系数】
    hdoj 1260 Tickets【dp】
    poj 1564 Sum It Up【dfs+去重】
    2014 牡丹江现场赛 i题 (zoj 3827 Information Entropy)
    hdoj 2473 Junk-Mail Filter【并查集节点的删除】
  • 原文地址:https://www.cnblogs.com/java20130723/p/3212174.html
Copyright © 2011-2022 走看看