zoukankan      html  css  js  c++  java
  • POJ1284:Primitive Roots(欧拉函数的应用,奇素数的原根) java程序员

    Primitive Roots
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 2159   Accepted: 1194

    Description

    We say that integer x, 0 < x < p, is a primitive root modulo odd prime p if and only if the set { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 }. For example, the consecutive powers of 3 modulo 7 are 3, 2, 6, 4, 5, 1, and thus 3 is a primitive root modulo 7. 
    Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p. 

    Input

    Each line of the input contains an odd prime numbers p. Input is terminated by the end-of-file seperator.

    Output

    For each p, print a single number that gives the number of primitive roots in a single line.

    Sample Input

    23
    31
    79
    

    Sample Output

    10
    8
    24
    

    Source

    MYCode:
    #include<iostream>
    #include<cstring>
    #include<cstdio>
    #include<cmath>
    using namespace std;
    #define MAX 65550
    int prime[MAX];
    bool flag[MAX];
    int ct;
    void pre()
    {
        memset(flag,0,sizeof(flag));
        int i,j;
        flag[1]=1;
        ct=0;
        for(i=2;i*i<=MAX;i++)
        {
            if(!flag[i])
            {
                prime[ct++]=i;
                for(j=2*i;j<=MAX;j+=i)
                {
                    flag[j]=1;
                }
            }
        }
    }
    int euler(int x)
    {
        int res=x;
        int i;
        for(i=0;prime[i]*prime[i]<=x && i<ct;i++)
        {
            if(x%prime[i]==0)
            {
                res=res*1.0/prime[i]*(prime[i]-1);
                while(x%prime[i]==0)x/=prime[i];
            }
        }
        if(x>1)res=res/x*(x-1);
        return res;
    }
    int main()
    {
        int p;
        pre();
        while(scanf("%d",&p)!=EOF)
        {
            int ans=euler(p-1);
            printf("%d\n",ans);
        }
    }
    //
    求奇素数的原根:
    结论:root=euler(euler(p))=euler(p-1)
    euler函数的应用.
    如何证明呢?
    待定.
  • 相关阅读:
    sqlserver临时表或表变量代替游标
    Server嵌套事务处理的方法
    数据库一对一,一对多,多对多关系
    VS NuGet离线包(缓存包)nupkg安装
    搭建属于自己的NuGet服务器
    SQL Server Management Studio(SSMS)的使用与配置整理
    原来以为京东售后很好,现在才知道 京东售后就是个垃圾!
    [asp.net]C#实现json的序列化和反序列化
    ASP.NET中JSON的序列化和反序列化
    Javascript中判断变量是数组还是对象(array还是object)
  • 原文地址:https://www.cnblogs.com/java20130725/p/3215895.html
Copyright © 2011-2022 走看看