zoukankan      html  css  js  c++  java
  • 深入 Nginx:我们是如何为性能和规模做设计的

    NGINX 在网络应用中表现超群,在于其独特的设计。许多网络或应用服务器大都是基于线程或者进程的简单框架,NGINX突出的地方就在于其成熟的事件驱动框架,它能应对现代硬件上成千上万的并发连接。

    NGINX 内部信息图从进程框架的顶层开始,向下逐步揭示NGINX如何处理单个进程中的多个连接,并进一步探讨其工作机制。

    场景设置 — NGINX进程模型


     

    为了更好地理解这种设计模式,我们需要明白NGINX是如何运行的。NGINX拥有一个主线程,用来处理配置文件的读取、端口的绑定等特权操作,以及一组工作进程、辅助进程。


     

    在这个四核服务器中,主线程创建了四个工作进程和一组缓存辅助进程(cache helper processes),后者用来管理硬盘缓存。

    为什么框架如此重要?

    任何Unix应用的基础是线程或者进程-对于Linux操作系统,线程和进程几乎相同;最大的区别在于线程间是内存共享的。一个线程或者进程是一套指令集(self-contained set of instructions ),操作系统调度这些指令在单个CPU内核上运行。许多复杂应用并行地运行在多个线程或者进程,原因有二:

    应用可以同时使用计算机的多个CPU核

    线程和进程易于并行操作,比如同时处理多个连接

    进程和线程消耗资源,比如对内存以及其它操作系统资源的占用、内核切换(wapped on and off the cores)(本操作叫做一次上下文切换(context switch))。如今的服务器需要同时处理成千个小的、活跃线程或者进程,一旦内存耗尽、或者过高的读写负载,这些都会导致大规模的上下文切换,性能会严重退化。

    通常的设计思路是,网络应用为每个连接分派一个线程或者进程。这类框架简单易于实现,不过在同时应对成千上万个连接时难以扩展。

    NGINX是如何运作的呢?

    NGINX利用一个预测进程模型调度可用的硬件资源:

    主进程处理配置文件读取、端口绑定等特权操作,以及创建一小组子进程(接下来三种类型的进程)

    启动时缓存加载器进程加载硬盘中缓存到内存中,接着退出。对它的调度是保守的,所以资源开销较低

    缓存管理进程定时运行,清理来自硬盘缓存的实体到指定的大小

    工作进程负责所有的工作,处理网络连接、硬盘读写操作、以及上游服务器通信

    NGINX推荐的配置是,一个工作进程对应一个CPU内核,确保硬件资源的有效利用,在配置文件中设置worker_processes auto:

    worker_processes auto;

    一旦NGINX服务起来,仅有工作进程在忙,每个工作进程采用非阻塞地方式处理多个连接,降低上下文切换的次数。

    每个工作进程都是单线程且独立运行,负责获取新连接并进行处理。进程之间通过共享内存进行通信,诸如缓存数据,会话持续化数据(ession persistence data),以及其他共享资源。NGINX1.7.11及以后的版本,有一个可选的线程池,工作进程将阻塞操作丢给它们。更多细节,参看《Nginx 引入线程池,提升 9 倍性能》(http://blog.jobbole.com/87988/)。对于NGINX Plus用户,这些新特性会在今年的发布版7中出现。

    NGINX内部工作进程


     

    每个NGINX工作进程由配置文件对其进行初始化,主进程为其提供一组监听socket。

    工作进程起始于socket监听事件(accept_mutex 和 kernel socket sharding),事件由新的连接进行初始化,接着这些连接被派发给某个状态机—HTTP状态机是其中最常用的一种,不过NGINX也实现了基于流的状态机、基于通信协议的状态机(SMTP, IMAP, and POP3)。


     

    状态机是一组重要的指令集,它会告诉NGINX怎样处理每个请求。许多网络服务器拥有NGINX的状态机一样的功能—区别就在于它们的实现不同。

    调度状态机

    状态机就像下象棋,单个HTTP事务如同一盘棋。棋盘的一端是网络服务器—就像大师级棋手非常快地做出决定,另一端为远程客户端—网络浏览器通过相对较慢的网络访问某个站点或应用。

    不过游戏规则可能非常复杂,比如网络服务可能需要和第三方、或者某个认证服务器通信,甚至服务器中的第三方模块来扩展游戏规则。

    阻塞状态机

    回到前面的描述,进程或者线程作为一套指令集,操作系统调度其运行在某个CPU内核上。大多数网络服务器和网络应用按照一个进程处理一个连接,或者一个线程处理一个连接的模型来玩象棋游戏;每个包含指令的进程或者线程参与游戏的整个过程。在这期间,运行在服务器上进程大多数时间被阻塞掉了,即等待某个客户端去完成下一步棋。


     

    网络服务器进程监听socket上的新连接,此游戏新连接由客户端发起。

    一旦获得新游戏,进入游戏环节,每一次移动都需等待客户端响应,进程就被阻塞了。

    一旦游戏结束,网络服务器进程就会查看客户端是否想再来一局(对应某个存活的连接)。一旦连接关闭(客户端离开或者超时),网络服务器进程就会返回监听新的游戏。

    记住每一个活跃的HTTP连接即每一局象棋游戏,需要象棋大师一般的特定进程或者线程参与其中。这个架构简单易于扩展第三方模型即新的规则。然而,这里存在一个极不平衡的逻辑,对于相关轻量级的HTTP连接,由单个文件描述符和少量的内存表示,此连接会映射到某个线程或进程上,而线程或者进程是一个重量级的操作系统对象。尽管编程时很方便,但浪费却是巨大的。

    NGINX是一个真正的大师

    或许你听说过同时展示游戏,一个象棋大师同时对阵十二个棋手。


     

    NGINX工作进程也是这么玩”象棋”的,每个工作进程-一个CPU内核上的工作者-即是一个可以同时应对成千上万游戏的大师。


     

    工作进程从已连接并开始监听的套接字(socket)那里获取事件;

    一旦socket接收到事件,工作进程会立即处理此事件:

    socket上的某个监听事件即客户端开启一个新的象棋游戏,而工作进程创建一个新的socket连接。

    socket连接上的某个事件即客户端走了一步棋,工作线程做出了恰当地响应。

    工作进程从来不会阻塞在网络传输上等待它的对手(客户端)回复应答。每走完一步棋后,工作进程会迅速处理其它等待的象棋游戏,或者欢迎新的游戏玩家进入。

    为何比阻塞、多进程框架快呢?

    NGINX良好的扩展性在于其支持一个工作线程处理成千上万个连接。每个新连接创建文件描述符,仅消耗工作进程很少一部分额外内存,额外的开销很小。进程能够一直绑定CPU(pinned to CPUs),这样上下文切换相对没有那么频繁,只有没工作时才会发生。

    译者注:cpu绑定是指绑定一个或者多个进程到一个或者多个处理器上.

    使用阻塞方式,即一个连接对应一个进程,每个连接需要大量的额外资源以及开销,上下文切换非常频繁。

    只要恰当的系统调优,NGINX每个工作进程可以处理成千上万个并发HTTP连接,毫无差错地应对网络高峰,即同时可以玩更多的象棋游戏。

    更新配置文件升级NGINX

    进程框架拥有少量工作进程,有利配置文件甚至二进制文件更新。


     

    更新NGINX配置是一个简单、轻量级的可靠操作。即只要运行nginx -s reload命令,就会检查磁盘上的配置文件,并给主进程发送一个SIGHUB信号。

    一旦主进程接受到一个SIGHUB,它会做两件事:

    重载配置文件、创建一组新的工作进程,新创建的工作进程立即接受连接、处理网络通信( 采用新的配置环境)。

    通知旧的工作进程优雅地推出,这些工作进程停止接受新连接。一旦当前处理的HTTP请求结束,工作进程会关闭连接。一旦所有连接关闭,工作进程就会退出。

    重载进程会引起一个小的CPU和内存高峰,不过从活跃连接处加载的资源相比,开销微乎其微。每一秒可以多次重载配置文件。产生诸多等待连接关闭的NGINX工作进程一般很少出问题,不过就算是有问题也可以迅速解决。

    NGINX二进文件升级获得极佳的高可用性-你可以在线升级文件,而且不会丢失任何连接、服务也不会停机或中断。

    译者注: on the fly 程序在运行时,工作就可以完成。


     

    二进制文件升级进程方式类似优雅的配置文件重载;新的NGINX主进程和原有的主进程并行,分享监听socket。两个进程都处于活跃状态,处理它们各自的网络通信。你可以通知原有的主进程以及它的工作进程优雅地退出。

    最后结语

    NGINX内部信息图展示了NGINX的高标准功能全景图,简单解释的背后是十多年来不断创新优化,得益于此NGINX被广泛应用于各种硬件平台,并且取得了最优异的性能表现。即便是在现代,网络应用需要对安全和可靠性作出维护,NGINX也表现不凡。

    扩展阅读

    Nginx面试中最常见的18道题

    三分钟看懂Nginx服务器的缓存原理和机制

    全面了解Nginx到底能做什么

    也谈如何构建高性能服务端程序

    MySQL 性能优化 : 索引和查询优化

    【面试现场】如何设计可自学习的五子棋AI?

    来源:http://blog.jobbole.com/88766/

     
  • 相关阅读:
    ubuntu apt-get工作原理
    关联式容器(associative containers)
    qsort()与besearch()
    D&F学数据结构系列——插入排序
    D&F学数据结构系列——二叉堆
    Windows 系统环境变量的配置
    Python 的版本选择与安装细节
    计算机基础知识总结
    PEP 8 -- Python代码格式规则
    day57 Django补充内容(中间件其他方法、jQuery操作cookie、csrf详解和form组件简单使用)
  • 原文地址:https://www.cnblogs.com/javafirst0/p/10734598.html
Copyright © 2011-2022 走看看