zoukankan      html  css  js  c++  java
  • 第25月第5天 Hands-on Machine Learning with Scikit-Learn and TensorFlow

    1.apachecn视频(机器学习实战)

    https://github.com/apachecn/AiLearning

    https://space.bilibili.com/97678687/#/channel/detail?cid=22486

    2.莫烦

    https://morvanzhou.github.io/tutorials/machine-learning/sklearn/2-2-general-pattern/

    https://github.com/MorvanZhou/tutorials/tree/master/sklearnTUT

    源代码在sklean 0.20.0 运行问题

    from sklearn.learning_curve import 改为 from sklearn.model_selection import
    scoring='mean_squared_error' 改为 scoring='neg_mean_squared_error'

    http://sklearn.apachecn.org/cn/stable/modules/model_evaluation.html

    #-------------------------------------
    用Python开始机器学习(sklearn)

    https://blog.csdn.net/lsldd/article/details/41357931

    机器学习之路

    https://www.cnblogs.com/Lin-Yi/p/8970527.html

    https://github.com/linyi0604/MachineLearning

    20181004还在学习的人

    https://blog.csdn.net/dingming001/article/details/82935715

    3.Hands-on Machine Learning with Scikit-Learn and TensorFlow

    https://github.com/apachecn/hands_on_Ml_with_Sklearn_and_TF

    https://www.jianshu.com/p/49bfb59b96b7

    https://github.com/ageron/handson-ml

    ubuntu安装

    清华大学开源软件网站上选择合适的源文件并下载

    https://blog.csdn.net/hgdwdtt/article/details/78633232

    命令

     anaconda search -t conda tensorflow

    conda源更改:

    conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

    conda config --set show_channel_urls yes

    vi ~/.condarc 

    删除default

    conda info 

    https://jingyan.baidu.com/article/1876c8527be1c3890a137645.html

    4.anaconda

    Using Anaconda

    When using Anaconda, you can optionally create an isolated Python environment dedicated to this project. This is recommended as it makes it possible to have a different environment for each project (e.g. one for this project), with potentially different libraries and library versions:

    $ conda create -n mlbook python=3.5 anaconda
    $ source activate mlbook
    

    This creates a fresh Python 3.5 environment called mlbook (you can change the name if you want to), and it activates it. This environment contains all the scientific libraries that come with Anaconda. This includes all the libraries we will need (NumPy, Matplotlib, Pandas, Jupyter and a few others), except for TensorFlow, so let's install it:

    $ conda install -n mlbook -c conda-forge tensorflow
    

    This installs the latest version of TensorFlow available for Anaconda (which is usually not the latest TensorFlow version) in the mlbook environment (fetching it from the conda-forge repository). If you chose not to create an mlbook environment, then just remove the -n mlbook option.

    Next, you can optionally install Jupyter extensions. These are useful to have nice tables of contents in the notebooks, but they are not required.

    $ conda install -n mlbook -c conda-forge jupyter_contrib_nbextensions

    Starting Jupyter

    If you want to use the Jupyter extensions (optional, they are mainly useful to have nice tables of contents), you first need to install them:

    $ jupyter contrib nbextension install --user
    

    Then you can activate an extension, such as the Table of Contents (2) extension:

    $ jupyter nbextension enable toc2/main
    

    Okay! You can now start Jupyter, simply type:

    $ jupyter notebook




    Enviroment setup

    Create an enviroment from the enviroment.yml file

    conda env create -f environment.yml

    activate enviroment

    source activate supervised

    Update enviroment

    conda env export > environment.yml

    source



  • 相关阅读:
    数据结构8.4_动态存储管理之伙伴系统
    http code码实验
    php问题
    对称加密和非对称加密
    公钥与私钥,HTTPS详解
    数字证书原理,公钥私钥加密原理
    简明 Nginx Location Url 配置笔记
    HTTP状态码精简版
    给你掰扯清楚什么是正向代理,什么是反向代理
    关键字
  • 原文地址:https://www.cnblogs.com/javastart/p/9743903.html
Copyright © 2011-2022 走看看