原题:
题目描述
Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if its K-based notation doesn’t contain two successive zeros. For example:
(1)1010230 is a valid 7-digit number;
(2)1000198 is not a valid number;
(3)0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing N digits.
You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.
(1)1010230 is a valid 7-digit number;
(2)1000198 is not a valid number;
(3)0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing N digits.
You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.
输入
The numbers N and K in decimal notation separated by the line break.
输出
The result in decimal notation.
示例输入
2 10
示例输出
90
分析:
递推,哎呀,如果我自己递推,肯定哇。
原码;
#include <iostream> using namespace std; const int maxn=20; long long f[maxn],n,k; int main() { while(cin>>n>>k) { if(n==1) { cout<<k<<endl; return 0; } f[1]=k-1; f[2]=k*(k-1); for( int i=3; i<=n; i++) { f[i]=(f[i-1]+f[i-2])*(k-1); } cout<<f[n]<<endl; } return 0; }