zoukankan      html  css  js  c++  java
  • 【leetcode】Best Time to Buy and Sell Stock

    Question :    

    Say you have an array for which the ith element is the price of a given stock on day i.

    If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

    for example: array[]  = { 2, 5, 3, 8, 9, 4 } , maxProfit = 9 - 2 = 7.

    Anwser 1 :       

    class Solution {
    public:
        int maxProfit(vector<int> &prices) {
            // Start typing your C/C++ solution below
            // DO NOT write int main() function
            if(prices.size() == 0) return 0;
            
            int ret = 0;
            
            int len = prices.size();
            int maxPrice = prices[len-1];
            for(int i = len - 1; i >= 0; i--){
                maxPrice = max(prices[i], maxPrice);    // maxPrice
                ret = max(ret, maxPrice - prices[i]);   // maxProfit
            }
            
            return ret;
        }
    };

    注意点:

    最大利润,应该是先买的最低价与后卖的最高价的差值,因此需要考虑时间先后顺序

    Anwser 2 :       

    class Solution {
    public:
        int maxProfit(vector<int> &prices) {
            // Start typing your C/C++ solution below
            // DO NOT write int main() function
            int maxp = 0;
            int dp = 0;        
            for(int i = prices.size()-2; i >= 0 ;i--)
            {
                if(dp >= 0){
                    dp += (prices[i+1] - prices[i]);
                } else {
                    dp = max(0, prices[i+1] - prices[i]);
                }
                maxp = max(dp, maxp);
            }  
            return maxp;
        }
    };

    说明:

    1) 此法把两数之间最大差,转化为了求两数组之间最大和

    2) dp += (prices[i+1] - prices[i]) 实际上是 dp +=  (prices[i+1] - prices[i])  +  (prices[i] - prices[i-1])  +  (prices[i-1] - prices[i-2]) + ... =  (prices[i] - prices[j])   (i > j)

    参考推荐:

    数组中数对差最大

  • 相关阅读:
    设计模式之原型模式
    Mac OSx下的APK反编译
    Android中ListView封装收缩与展开
    带密码登录的密码保险箱应用源码
    HTML 5缓存机制:Cache Manifest配置实例
    PHP开发大型项目的一点经验
    Windows Phone 编程: 摇一摇 效果
    swift皮筋弹动发射飞机
    Win8.1应用开发之适配器模式(C#实现)
    java实现身份证校验
  • 原文地址:https://www.cnblogs.com/javawebsoa/p/3034483.html
Copyright © 2011-2022 走看看