Q: Why did nineteenth century mathematicians devote time to the proof of self-evident results? Select the best answer.
A: To gain mastery of, and confidence in, the methods of abstract proof to apply them in less obvious cases.
(看这个看的想睡觉,可能是没有动手跟上老师的思路,只是被动吸收。)
习题
2. Say whether the following proof is valid or not. [3 points]
Theorem. The square of any odd number is 1 more than a multiple of 8. (For example, 32=9=8+1,52=25=3⋅8+1.)
Proof: By the Division Theorem, any number can be expressed in one of the forms 4q, 4q+1, 4q+2, 4q+3. So any odd number has one of the forms 4q+1,4q+3. Squaring each of these gives:
(4q+1)2(4q+3)2==16q2+8q+116q2+24q+9==8(2q2+q)+18(2q2+3q+1)+1
In both cases the result is one more than a multiple of 8. This proves the theorem.
不是很理解题意。我的理解:任何奇数的平法都可以表示为 8x + 1 (x 是整数)
Say whether the following verification of the method of induction is valid or not. [3 points]
Proof: We have to prove that if:
* A(1)
* (∀n)[A(n)⇒A(n+1)]
then (∀n)A(n).
We argue by contradiction. Suppose the conclusion is false. Then there will be a natural number n such that ¬A(n). Let m be the least such number. By the first condition, m>1, so m=n+1 for some n. Since n<m, A(n). Then by the second condition, A(n+1), i.e., A(m). This is a contradiction, and that proves the result.
Evaluate this purported proof
Evaluate this purported proof
Evaluate this purported proof