zoukankan      html  css  js  c++  java
  • 2020年大三下学期第十七周学习心得

    # It is based on the OpenCV project.
    import cv2 as cv
    import argparse
    import sys
    import numpy as np
    import os.path
    # Initialize the parameters
    confThreshold = 0.5  # Confidence threshold
    nmsThreshold = 0.4  # Non-maximum suppression threshold
    inpWidth = 416  # Width of network's input image
    inpHeight = 416  # Height of network's input image
    
    parser = argparse.ArgumentParser(description='Object Detection using YOLO in OPENCV')
    parser.add_argument('--image', help='Path to image file.')
    parser.add_argument('--video',default='test3_video.mp4', help='Path to video file.')
    args = parser.parse_args()
    
    # Load names of classes
    classesFile = "coco.names";
    classes = None
    with open(classesFile, 'rt') as f:
        classes = f.read().rstrip('
    ').split('
    ')
    
    # Give the configuration and weight files for the model and load the network using them.
    modelConfiguration = "yolov3.cfg";
    modelWeights = "yolov3.weights";
    
    net = cv.dnn.readNetFromDarknet(modelConfiguration, modelWeights)
    net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
    net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
    
    
    # Get the names of the output layers
    def getOutputsNames(net):
        # Get the names of all the layers in the network
        layersNames = net.getLayerNames()
        # Get the names of the output layers,
        # i.e. the layers with unconnected outputs
        return [layersNames[i[0] - 1] for i in net.getUnconnectedOutLayers()]
    
    
    # Draw the predicted bounding box
    def drawPred(classId, conf, left, top, right, bottom):
        # Draw a bounding box.
        # print(classId)
        cv.rectangle(frame, (left, top), (right, bottom), (int(classId)*66+10, int(classId)*33+int(classId)*10-10+33, int(classId)*50+85), 3)
    
        label = '%.2f' % conf
    
        # Get the label for the class name and its confidence
        if classes:
            assert (classId < len(classes))
            label = '%s:%s' % (classes[classId], label)
    
        # Display the label at the top of the bounding box
        labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
        top = max(top, labelSize[1])
        cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine),
                     (255, 255, 255), cv.FILLED)
        cv.putText(frame, label, (left, top), cv.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 0), 1)
    
    
    # Remove the bounding boxes with low confidence using nms
    def postprocess(frame, outs):
        frameHeight = frame.shape[0]
        frameWidth = frame.shape[1]
    
        classIds = []
        confidences = []
        boxes = []
        # Scan through all the bounding boxes output from the network and
        # keep only the ones with high confidence scores.
        # Assign the box's class label as the class with the highest score.
        classIds = []
        confidences = []
        boxes = []
        for out in outs:
            for detection in out:
                scores = detection[5:]
                classId = np.argmax(scores)
                confidence = scores[classId]
                if confidence > confThreshold:
                    center_x = int(detection[0] * frameWidth)
                    center_y = int(detection[1] * frameHeight)
                    width = int(detection[2] * frameWidth)
                    height = int(detection[3] * frameHeight)
                    left = int(center_x - width / 2)
                    top = int(center_y - height / 2)
                    classIds.append(classId)
                    confidences.append(float(confidence))
                    boxes.append([left, top, width, height])
    
        # Perform nms to eliminate redundant overlapping boxes with
        # lower confidences.
        indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
        for i in indices:
            i = i[0]
            box = boxes[i]
            left = box[0]
            top = box[1]
            width = box[2]
            height = box[3]
            drawPred(classIds[i], confidences[i], left, top, left + width, top + height)
    
    def postprocess2(frame, outs):
            frameHeight = frame.shape[0]
            frameWidth = frame.shape[1]
    
            classIds = []
            confidences = []
            boxes = []
            # Scan through all the bounding boxes output from the network and
            # keep only the ones with high confidence scores.
            # Assign the box's class label as the class with the highest score.
            classIds = []
            confidences = []
            boxes = []
            for out in outs:
                for detection in out:
                    scores = detection[5:]
                    classId = np.argmax(scores)
                    confidence = scores[classId]
                    if confidence > confThreshold:
                        center_x = int(detection[0] * frameWidth)
                        center_y = int(detection[1] * frameHeight)
                        width = int(detection[2] * frameWidth)
                        height = int(detection[3] * frameHeight)
                        left = int(center_x - width / 2)
                        top = int(center_y - height / 2)
                        classIds.append(classId)
                        confidences.append(float(confidence))
                        boxes.append([left, top, width, height])
    
            # Perform nms to eliminate redundant overlapping boxes with
            # lower confidences.
            indices = cv.dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold)
            num=[0,0,0,0,0,0]
            person = 0
            car=0
            motorbike=0
            bus=0
            bicycle=0
            for i in indices:
                i = i[0]
                box = boxes[i]
                left = box[0]
                top = box[1]
                width = box[2]
                height = box[3]
                print(str(classes[classIds[i]]))
                if(str(classes[classIds[i]])=="person"):
                    person+=1
                    num=[person,car,motorbike,bus,bicycle]
                if(str(classes[classIds[i]])=="car"):
                    car+=1
                    num=[person,car,motorbike,bus,bicycle]
                if (str(classes[classIds[i]]) == "motorbike"):
                    motorbike += 1
                    num = [person, car, motorbike, bus,bicycle]
                if (str(classes[classIds[i]]) == "bus"):
                    bus += 1
                    num = [person, car, motorbike, bus,bicycle]
                if (str(classes[classIds[i]]) == "bicycle"):
                    bicycle += 1
                    num = [person, car, motorbike, bus,bicycle]
            return num
    # Process inputs
    winName = 'Deep learning object detection in OpenCV'
    cv.namedWindow(winName, cv.WINDOW_NORMAL)
    
    outputFile = "yolo_out_py.avi"
    if (args.image):
        # Open the image file
        if not os.path.isfile(args.image):
            print("Input image file ", args.image, " doesn't exist")
            sys.exit(1)
        cap = cv.VideoCapture(args.image)
        outputFile = args.image[:-4] + '_yolo_out_py.jpg'
    elif (args.video):
        # Open the video file
        if not os.path.isfile(args.video):
            print("Input video file ", args.video, " doesn't exist")
            sys.exit(1)
        cap = cv.VideoCapture(args.video)
        outputFile = args.video[:-4] + 'test_video_out.avi'
    else:
        # Webcam input
        cap = cv.VideoCapture(0)
    
    # Get the video writer initialized to save the output video
    if (not args.image):
        vid_writer = cv.VideoWriter(outputFile, cv.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
                                    (round(cap.get(cv.CAP_PROP_FRAME_WIDTH)), round(cap.get(cv.CAP_PROP_FRAME_HEIGHT))))
    
    while cv.waitKey(1) < 0:
    
        # get frame from the video
        hasFrame, frame = cap.read()
    
        # Stop the program if reached end of video
        if not hasFrame:
            print("Done processing !!!")
            print("Output file is stored as ", outputFile)
            cv.waitKey(3000)
            # Release device
            cap.release()
            break
    
        # Create a 4D blob from a frame.
        blob = cv.dnn.blobFromImage(frame, 1 / 255, (inpWidth, inpHeight), [0, 0, 0], 1, crop=False)
    
        # Sets the input to the network
        net.setInput(blob)
        # Runs the forward pass to get output of the output layers
        outs = net.forward(getOutputsNames(net))
        # Remove the bounding boxes with low confidence
        postprocess(frame, outs)
    
        # Put efficiency information.
        # The function getPerfProfile returns the overall time for inference(t)
        # and the timings for each of the layers(in layersTimes)
        t, _ = net.getPerfProfile()
        label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
        cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
        label = 'Person num:%s' % (postprocess2(frame,outs)[0])
        cv.putText(frame, label, (0, 30), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 0))
        label = 'Car num:%s' % (postprocess2(frame, outs)[1])
        cv.putText(frame, label, (0, 45), cv.FONT_HERSHEY_SIMPLEX, 0.5, (240, 255, 255))
        label = 'Motorbike num:%s' % (postprocess2(frame, outs)[2])
        cv.putText(frame, label, (0, 60), cv.FONT_HERSHEY_SIMPLEX, 0.5, (245, 245, 245))
        label = 'Bus num:%s' % (postprocess2(frame, outs)[3])
        cv.putText(frame, label, (0, 75), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 97, 0))
        label = 'Bicycle num:%s' % (postprocess2(frame, outs)[4])
        cv.putText(frame, label, (0, 90), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 230, 201))
        # Write the frame with the detection boxes
        if (args.image):
            cv.imwrite(outputFile, frame.astype(np.uint8));
        else:
            vid_writer.write(frame.astype(np.uint8))
        cv.imshow(winName, frame)
    

      截图:

  • 相关阅读:
    HDU-1421 搬寝室(递推,DP,数学)2017寒假集训
    HDU-2577 How to Type(递推,DP)(水)2017寒假集训
    POJ-1088 滑雪(DP,二维LIS,记忆化)2017寒假集训
    CSUST-17级集训队选拔赛解题报告
    (十六)服务化:微服务架构,必须搞定高可用!
    (十五)服务化:微服务架构,粒度多少合适?
    (十四)服务化:微服务架构,究竟解决什么问题?
    (十三)本章小结:百万流量,这些技术够用了
    (十二)性能优化:读写分离,前台与后台分离
    (十一)性能优化:动静分离,互联网优化利器?
  • 原文地址:https://www.cnblogs.com/jccjcc/p/13098151.html
Copyright © 2011-2022 走看看