zoukankan      html  css  js  c++  java
  • [LeetCode] Subsets


    Recursive (Backtracking)

    This is a typical problem that can be tackled by backtracking. Since backtracking has a more-or-less similar template, so I do not give explanations for this method.

     1 class Solution {
     2 public:
     3     vector<vector<int>> subsets(vector<int>& nums) {
     4         sort(nums.begin(), nums.end());
     5         vector<vector<int>> subs;
     6         vector<int> sub;
     7         genSubsets(nums, 0, sub, subs);
     8         return subs; 
     9     }
    10     void genSubsets(vector<int>& nums, int start, vector<int>& sub, vector<vector<int>>& subs) {
    11         subs.push_back(sub);
    12         for (int i = start; i < nums.size(); i++) {
    13             sub.push_back(nums[i]);
    14             genSubsets(nums, i + 1, sub, subs);
    15             sub.pop_back();
    16         }
    17     }
    18 };

    Iterative

    This problem can also be solved iteratively. Take [1, 2, 3] in the problem statement as an example. The process of generating all the subsets is like:

    1. Initially: [[]]
    2. Adding the first number to all the existed subsets: [[], [1]];
    3. Adding the second number to all the existed subsets: [[], [1], [2], [1, 2]];
    4. Adding the third number to all the existed subsets: [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]].

    Have you got the idea :-)

    The code is as follows.

     1 class Solution {
     2 public:
     3     vector<vector<int>> subsets(vector<int>& nums) {
     4         sort(nums.begin(), nums.end());
     5         vector<vector<int>> subs(1, vector<int>());
     6         for (int i = 0; i < nums.size(); i++) {
     7             int n = subs.size();
     8             for (int j = 0; j < n; j++) {
     9                 subs.push_back(subs[j]); 
    10                 subs.back().push_back(nums[i]);
    11             }
    12         }
    13         return subs;
    14     }
    15 };

    Bit Manipulation

    This is the most clever solution that I have seen. The idea is that to give all the possible subsets, we just need to exhaust all the possible combinations of the numbers. And each number has only two possibilities: either in or not in a subset. And this can be represented using a bit.

    There is also another a way to visualize this idea. That is, if we use the above example, 1appears once in every two consecutive subsets, 2 appears twice in every four consecutive subsets, and 3 appears four times in every eight subsets, shown in the following (initially the 8subsets are all empty):

    [], [], [], [], [], [], [], []

    [], [1], [], [1], [], [1], [], [1]

    [], [1], [2], [1, 2], [], [1], [2], [1, 2]

    [], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]

    The code is as follows.

     1 class Solution {
     2 public:
     3     vector<vector<int>> subsets(vector<int>& nums) {
     4         sort(nums.begin(), nums.end());
     5         int num_subset = pow(2, nums.size()); 
     6         vector<vector<int> > res(num_subset, vector<int>());
     7         for (int i = 0; i < nums.size(); i++)
     8             for (int j = 0; j < num_subset; j++)
     9                 if ((j >> i) & 1)
    10                     res[j].push_back(nums[i]);
    11         return res; 
    12     }
    13 };

    Well, just a final remark. For Python programmers, this may be an easy task in practice since the itertools package has a function combinations for it :-) 

  • 相关阅读:
    sql语句之group_concat函数
    Yii2 PHPExcel在linux环境下导出报500错误
    使用 PuTTY 时遇到错误:“expected key exchange group packet from server”
    Yii2 执行Save()方法失败,却没有错误信息
    js
    导航切换到当前页的时候,会触发这个方法
    Yii2 场景scenario的应用
    Yii2 hasMany 关联后加条件
    设置Yii2发生错误返回json
    Exception 'ReflectionException' with message 'Class require does not exist'
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4548112.html
Copyright © 2011-2022 走看看