zoukankan      html  css  js  c++  java
  • [LeetCode] 4Sum

    Well, this problem has a O(n^3) solution similar to 3Sum. That is, fix two elements nums[i] and nums[j] (i < j) and search in the remaining array for two elements that sum to the target - nums[i] - nums[j]. Since i and j both have O(n) possible values and searching in the remaining array for two elements (just like 3Sum that fixes one and search for two other) has O(n) complexity using two pointers (left and right), the total time complexity is O(n^3).

    The code is as follows, which should explain itself.

     1     vector<vector<int> > fourSum(vector<int>& nums, int target) {
     2         sort(nums.begin(), nums.end());
     3         vector<vector<int> > res;
     4         for (int i = 0; i < (int)nums.size() - 3; i++) {
     5             for (int j = i + 1; j < (int)nums.size() - 2; j++) {
     6                 int left = j + 1, right = nums.size() - 1;
     7                 while (left < right) {
     8                     int temp = nums[i] + nums[j] + nums[left] + nums[right];
     9                     if (temp == target) {
    10                         vector<int> sol(4);
    11                         sol[0] = nums[i];
    12                         sol[1] = nums[j];
    13                         sol[2] = nums[left];
    14                         sol[3] = nums[right];
    15                         res.push_back(sol);
    16                         while (left < right && nums[left] == sol[2]) left++;
    17                         while (left < right && nums[right] == sol[3]) right--;
    18                     }
    19                     else if (temp < target) left++;
    20                     else right--;
    21                 }
    22                 while (j + 1 < (int)nums.size() - 2 && nums[j + 1] == nums[j]) j++;
    23             }
    24             while (i + 1 < (int)nums.size() - 3 && nums[i + 1] == nums[i]) i++;
    25         }
    26         return res;
    27     }

    In fact, there is also an O(n^2logn) solution by storing all the possible sum of a pair of elements in nums first. There are such solutions in solution 1, solution 2 and solution 3. You may refer to them. One thing to mention is that all these solutions are slower than the above O(n^3) solution on the OJ :)

    Personally I like solution 3 and rewrite it below.

     1     vector<vector<int> > fourSum(vector<int>& nums, int target) {
     2         sort(nums.begin(), nums.end());
     3         unordered_map<int, vector<pair<int, int> > > mp;
     4         for (int i = 0; i < nums.size(); i++)
     5             for (int j = i + 1; j < nums.size(); j++)
     6                 mp[nums[i] + nums[j]].push_back(make_pair(i, j));
     7         vector<vector<int> > res;
     8         for (int i = 0; i < (int)nums.size() - 3; i++) {
     9             if (i && nums[i] == nums[i - 1]) continue;
    10             for (int j = i + 1; j < (int)nums.size() - 2; j++) {
    11                 if (j > i + 1 && nums[j] == nums[j - 1]) continue;
    12                 int remain = target - nums[i] - nums[j];
    13                 if (mp.find(remain) != mp.end()) {
    14                     for (auto itr = mp[remain].begin(); itr != mp[remain].end(); itr++) {
    15                         int k = (*itr).first, l = (*itr).second;
    16                         if (k > j) {
    17                             vector<int> ans(4);
    18                             ans[0] = nums[i];
    19                             ans[1] = nums[j];
    20                             ans[2] = nums[k];
    21                             ans[3] = nums[l];
    22                             if (res.empty() || ans != res.back())
    23                                 res.push_back(ans);
    24                         }
    25                     }
    26                 }
    27             }
    28         }
    29         return res;
    30     }
  • 相关阅读:
    编译安装Nginx和php搭建KodExplorer网盘
    mysql二进制安装及基础操作
    Apache环境下搭建KodExplorer网盘
    编译安装Apache httpd和php搭建KodExplorer网盘
    KodExplorer介绍
    Nginx反向代理、负载均衡及日志
    Nginx include和Nginx指令的使用
    Nginx auto_index和auth_basic
    [译]在 64bit 环境中执行32 bit的SSIS包
    [译]SSIS 通过环境变量配置数据源连接参数
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4567868.html
Copyright © 2011-2022 走看看