zoukankan      html  css  js  c++  java
  • [LeetCode] 4Sum

    Well, this problem has a O(n^3) solution similar to 3Sum. That is, fix two elements nums[i] and nums[j] (i < j) and search in the remaining array for two elements that sum to the target - nums[i] - nums[j]. Since i and j both have O(n) possible values and searching in the remaining array for two elements (just like 3Sum that fixes one and search for two other) has O(n) complexity using two pointers (left and right), the total time complexity is O(n^3).

    The code is as follows, which should explain itself.

     1     vector<vector<int> > fourSum(vector<int>& nums, int target) {
     2         sort(nums.begin(), nums.end());
     3         vector<vector<int> > res;
     4         for (int i = 0; i < (int)nums.size() - 3; i++) {
     5             for (int j = i + 1; j < (int)nums.size() - 2; j++) {
     6                 int left = j + 1, right = nums.size() - 1;
     7                 while (left < right) {
     8                     int temp = nums[i] + nums[j] + nums[left] + nums[right];
     9                     if (temp == target) {
    10                         vector<int> sol(4);
    11                         sol[0] = nums[i];
    12                         sol[1] = nums[j];
    13                         sol[2] = nums[left];
    14                         sol[3] = nums[right];
    15                         res.push_back(sol);
    16                         while (left < right && nums[left] == sol[2]) left++;
    17                         while (left < right && nums[right] == sol[3]) right--;
    18                     }
    19                     else if (temp < target) left++;
    20                     else right--;
    21                 }
    22                 while (j + 1 < (int)nums.size() - 2 && nums[j + 1] == nums[j]) j++;
    23             }
    24             while (i + 1 < (int)nums.size() - 3 && nums[i + 1] == nums[i]) i++;
    25         }
    26         return res;
    27     }

    In fact, there is also an O(n^2logn) solution by storing all the possible sum of a pair of elements in nums first. There are such solutions in solution 1, solution 2 and solution 3. You may refer to them. One thing to mention is that all these solutions are slower than the above O(n^3) solution on the OJ :)

    Personally I like solution 3 and rewrite it below.

     1     vector<vector<int> > fourSum(vector<int>& nums, int target) {
     2         sort(nums.begin(), nums.end());
     3         unordered_map<int, vector<pair<int, int> > > mp;
     4         for (int i = 0; i < nums.size(); i++)
     5             for (int j = i + 1; j < nums.size(); j++)
     6                 mp[nums[i] + nums[j]].push_back(make_pair(i, j));
     7         vector<vector<int> > res;
     8         for (int i = 0; i < (int)nums.size() - 3; i++) {
     9             if (i && nums[i] == nums[i - 1]) continue;
    10             for (int j = i + 1; j < (int)nums.size() - 2; j++) {
    11                 if (j > i + 1 && nums[j] == nums[j - 1]) continue;
    12                 int remain = target - nums[i] - nums[j];
    13                 if (mp.find(remain) != mp.end()) {
    14                     for (auto itr = mp[remain].begin(); itr != mp[remain].end(); itr++) {
    15                         int k = (*itr).first, l = (*itr).second;
    16                         if (k > j) {
    17                             vector<int> ans(4);
    18                             ans[0] = nums[i];
    19                             ans[1] = nums[j];
    20                             ans[2] = nums[k];
    21                             ans[3] = nums[l];
    22                             if (res.empty() || ans != res.back())
    23                                 res.push_back(ans);
    24                         }
    25                     }
    26                 }
    27             }
    28         }
    29         return res;
    30     }
  • 相关阅读:
    Object Files (.obj)
    使用IIS Microsoft的web服务器和ftp服务器
    关于matlab
    char, signed char, unsigned char的区别
    百度面试
    google笔试题_2011
    ioctl 函数与网络接口
    Unity之热更新:(三)XLua
    C#之设计模式:观察者模式
    C#:委托
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4567868.html
Copyright © 2011-2022 走看看