zoukankan      html  css  js  c++  java
  • [Algorithms] Longest Increasing Subsequence

    The Longest Increasing Subsequence (LIS) problem requires us to find a subsequence t of a given sequence s, such that t satisfies two requirements:

    1. Elements in t are sorted in ascending order;
    2. t is as long as possible.

    This problem can be solved using Dynamic Programming. We define the state P[i] to be the length of the longest increasing subsequence ends at i (with s[i] as its last element). Then the state equations are:

    1. P[i] = max_{j = 0, ..., i - 1 and arr[j] < arr[i]} P[j] + 1;
    2. If no such j exists, P[i] = 1.

    Putting these into code using a table to store results for smaller problems and solve it in a bottom-up manner. We will have the following code.

     1 #include <iostream>
     2 #include <string>
     3 #include <vector>
     4 
     5 using namespace std;
     6 
     7 int longestIncreasingSubsequence(vector<int>& nums) {
     8     vector<int> dp(nums.size(), 1);
     9     int maxlen = 0;
    10     for (int i = 1; i < nums.size(); i++) {
    11         for (int j = 0; j < i; j++) {
    12             if (nums[j] < nums[i] && dp[j] + 1 > dp[i]) {
    13                 dp[i] = dp[j] + 1;
    14                 maxlen = max(maxlen, dp[i]);
    15             }
    16         }
    17     }
    18     return maxlen;
    19 }
    20 
    21 void longestIncreasingSubsequenceTest(void) {
    22     int num[] = {10, 22, 9, 33, 21, 50, 41, 60, 80};
    23     vector<int> nums(num, num + sizeof(num) / sizeof(int));
    24     printf("%d
    ", longestIncreasingSubsequence(nums));
    25 }
    26 
    27 int main(void) {
    28     longestIncreasingSubsequenceTest();
    29     system("pause");
    30     return 0;
    31 }

     This program only computes the length of the LIS. If you want to print all the possible LIS, you need to modify the above program. Specifically, you may want to use backtracking to obtain all the possible LIS. My code is as follows. Welcome for any comments. Thank you!

     1 #include <iostream>
     2 #include <string>
     3 #include <vector>
     4 
     5 using namespace std;
     6 
     7 /* Helper function to find all LCS. */
     8 void findAllLCSHelper(vector<int>& nums, vector<int>& dp, vector<int>& seq, vector<vector<int> >& res, int maxlen, int end) {
     9     if (maxlen == 0) {
    10         reverse(seq.begin(), seq.end());
    11         res.push_back(seq);
    12         reverse(seq.begin(), seq.end());
    13         return;
    14     }
    15     for (int i = end; i >= 0; i--) {
    16         if (dp[i] == maxlen && (seq.empty() || nums[i] < seq.back())) {
    17             seq.push_back(nums[i]);
    18             findAllLCSHelper(nums, dp, seq, res, maxlen - 1, i - 1);
    19             seq.pop_back();
    20         }
    21     }
    22 }
    23 
    24 /* Function to find all LCS. */
    25 vector<vector<int> > findAllLCS(vector<int>& nums, vector<int>& dp, int maxlen) {
    26     vector<vector<int> > res;
    27     vector<int> seq;
    28     findAllLCSHelper(nums, dp, seq, res, maxlen, nums.size() - 1);
    29     return res;
    30 }
    31 
    32 /* Compute the length of LCS and print all of them. */
    33 int longestIncreasingSubsequence(vector<int>& nums) {
    34     vector<int> dp(nums.size(), 1);
    35     int maxlen = 0;
    36     for (int i = 1; i < (int)nums.size(); i++) {
    37         for (int j = 0; j < i; j++) {
    38             if (nums[j] < nums[i] && dp[j] + 1 > dp[i]) {
    39                 dp[i] = dp[j] + 1;
    40                 maxlen = max(maxlen, dp[i]);
    41             }
    42         }
    43     }
    44     vector<vector<int> > lcss = findAllLCS(nums, dp, maxlen);
    45     for (int i = 0; i < (int)lcss.size(); i++) {
    46         for (int j = 0; j < (int)lcss[i].size(); j++)
    47             printf("%d ", lcss[i][j]);
    48         printf("
    ");
    49     }
    50     return maxlen;
    51 }
    52 
    53 /* Test function. */
    54 void longestIncreasingSubsequenceTest(void) {
    55     int num[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15};
    56     vector<int> nums(num, num + sizeof(num) / sizeof(int));
    57     printf("%d
    ", longestIncreasingSubsequence(nums));
    58 }
    59 
    60 int main(void) {
    61     longestIncreasingSubsequenceTest();
    62     system("pause");
    63     return 0;
    64 }

    Running this program in Microsoft Visual Professional 2012 gives the following results.

    0 2 6 9 11 15
    0 4 6 9 11 15
    0 2 6 9 13 15
    0 4 6 9 13 15
    6

    The first four rows are the four LIS.

  • 相关阅读:
    What is the difference between Serialization and Marshaling?
    IEEE Standard 754 for Binary Floating-Point Arithmetic
    没有单元测试,就很难有真正的积累。
    一般只用 20% 的代码就可以解决 80% 的问题。但要想解决剩下 20% 的问题的话,则需要额外 80% 的代码。
    为失败设计,大量引入对SRE的理解,鲁棒性高
    用git合并分支时,如何保持某些文件不被合并
    git 分支合并时如何忽略某个文件
    Golang拼接字符串的5种方法及其效率_Chrispink-CSDN博客_golang 字符串拼接效率 https://blog.csdn.net/m0_37422289/article/details/103362740
    Lua大量字符串拼接方式效率对比及原因分析
    干货 | 携程多语言平台-Shark系统的高可用演进之路
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4576741.html
Copyright © 2011-2022 走看看