zoukankan      html  css  js  c++  java
  • [Algorithms] Longest Increasing Subsequence

    The Longest Increasing Subsequence (LIS) problem requires us to find a subsequence t of a given sequence s, such that t satisfies two requirements:

    1. Elements in t are sorted in ascending order;
    2. t is as long as possible.

    This problem can be solved using Dynamic Programming. We define the state P[i] to be the length of the longest increasing subsequence ends at i (with s[i] as its last element). Then the state equations are:

    1. P[i] = max_{j = 0, ..., i - 1 and arr[j] < arr[i]} P[j] + 1;
    2. If no such j exists, P[i] = 1.

    Putting these into code using a table to store results for smaller problems and solve it in a bottom-up manner. We will have the following code.

     1 #include <iostream>
     2 #include <string>
     3 #include <vector>
     4 
     5 using namespace std;
     6 
     7 int longestIncreasingSubsequence(vector<int>& nums) {
     8     vector<int> dp(nums.size(), 1);
     9     int maxlen = 0;
    10     for (int i = 1; i < nums.size(); i++) {
    11         for (int j = 0; j < i; j++) {
    12             if (nums[j] < nums[i] && dp[j] + 1 > dp[i]) {
    13                 dp[i] = dp[j] + 1;
    14                 maxlen = max(maxlen, dp[i]);
    15             }
    16         }
    17     }
    18     return maxlen;
    19 }
    20 
    21 void longestIncreasingSubsequenceTest(void) {
    22     int num[] = {10, 22, 9, 33, 21, 50, 41, 60, 80};
    23     vector<int> nums(num, num + sizeof(num) / sizeof(int));
    24     printf("%d
    ", longestIncreasingSubsequence(nums));
    25 }
    26 
    27 int main(void) {
    28     longestIncreasingSubsequenceTest();
    29     system("pause");
    30     return 0;
    31 }

     This program only computes the length of the LIS. If you want to print all the possible LIS, you need to modify the above program. Specifically, you may want to use backtracking to obtain all the possible LIS. My code is as follows. Welcome for any comments. Thank you!

     1 #include <iostream>
     2 #include <string>
     3 #include <vector>
     4 
     5 using namespace std;
     6 
     7 /* Helper function to find all LCS. */
     8 void findAllLCSHelper(vector<int>& nums, vector<int>& dp, vector<int>& seq, vector<vector<int> >& res, int maxlen, int end) {
     9     if (maxlen == 0) {
    10         reverse(seq.begin(), seq.end());
    11         res.push_back(seq);
    12         reverse(seq.begin(), seq.end());
    13         return;
    14     }
    15     for (int i = end; i >= 0; i--) {
    16         if (dp[i] == maxlen && (seq.empty() || nums[i] < seq.back())) {
    17             seq.push_back(nums[i]);
    18             findAllLCSHelper(nums, dp, seq, res, maxlen - 1, i - 1);
    19             seq.pop_back();
    20         }
    21     }
    22 }
    23 
    24 /* Function to find all LCS. */
    25 vector<vector<int> > findAllLCS(vector<int>& nums, vector<int>& dp, int maxlen) {
    26     vector<vector<int> > res;
    27     vector<int> seq;
    28     findAllLCSHelper(nums, dp, seq, res, maxlen, nums.size() - 1);
    29     return res;
    30 }
    31 
    32 /* Compute the length of LCS and print all of them. */
    33 int longestIncreasingSubsequence(vector<int>& nums) {
    34     vector<int> dp(nums.size(), 1);
    35     int maxlen = 0;
    36     for (int i = 1; i < (int)nums.size(); i++) {
    37         for (int j = 0; j < i; j++) {
    38             if (nums[j] < nums[i] && dp[j] + 1 > dp[i]) {
    39                 dp[i] = dp[j] + 1;
    40                 maxlen = max(maxlen, dp[i]);
    41             }
    42         }
    43     }
    44     vector<vector<int> > lcss = findAllLCS(nums, dp, maxlen);
    45     for (int i = 0; i < (int)lcss.size(); i++) {
    46         for (int j = 0; j < (int)lcss[i].size(); j++)
    47             printf("%d ", lcss[i][j]);
    48         printf("
    ");
    49     }
    50     return maxlen;
    51 }
    52 
    53 /* Test function. */
    54 void longestIncreasingSubsequenceTest(void) {
    55     int num[] = {0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15};
    56     vector<int> nums(num, num + sizeof(num) / sizeof(int));
    57     printf("%d
    ", longestIncreasingSubsequence(nums));
    58 }
    59 
    60 int main(void) {
    61     longestIncreasingSubsequenceTest();
    62     system("pause");
    63     return 0;
    64 }

    Running this program in Microsoft Visual Professional 2012 gives the following results.

    0 2 6 9 11 15
    0 4 6 9 11 15
    0 2 6 9 13 15
    0 4 6 9 13 15
    6

    The first four rows are the four LIS.

  • 相关阅读:
    正定矩阵与半正定矩阵定义与判别
    LQR (线性二次型调节器)的直观推导及简单应用
    simulink模块使用方式
    无人驾驶领域现有的主流智能车辆仿真软件具体情况介绍
    什么是在环测试
    C# Dictionary 是否包含key
    jquery.显示隐藏切换
    easyui-dialog
    Visual Studio 命令行wsdl生成C#操作类
    使用C#创建Windows服务
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4576741.html
Copyright © 2011-2022 走看看