zoukankan      html  css  js  c++  java
  • [Algorithms] Topological Sort

    Topological sort is an important application of DFS in directed acyclic graphs (DAG). For each edge (u, v) from node u to node v in the graph, u must appear before v in the topological sort.

    Topological sort has many interesting applications. One of them is job scheduling, in which you are assigned many jobs, each of the job has some prerequisite jobs, that means some jobs must be finished before you can move on to a particular job. If we express this dependency using a DAG (each job is represented as a node; if job u must be finished before job v, there is a directed edge from node u to node v), the topological sort of the graph will be a feasible schedule for the jobs.

    The implementation of topogical sort is based on the previous graph representation and the DFS algorithms in this passage. I also implement a function read_digraph to input a directed graph manually. It is basically the same to the function read_graph in the above link. You may refer to it for the formatting style of the graph and more information.

    The following graph is used to test the code.

    The code is as follows.

     1 #include <iostream>
     2 #include <vector>
     3 #include <queue>
     4 #include <unordered_set>
     5 
     6 using namespace std;
     7 
     8 struct GraphNode {
     9     int label;
    10     vector<GraphNode*> neighbors;
    11     GraphNode(int _label) : label(_label) {}
    12 };
    13 
    14 vector<GraphNode*> read_digraph(void) {
    15     int num_nodes, num_edges;
    16     scanf("%d %d", &num_nodes, &num_edges);
    17     vector<GraphNode*> graph(num_nodes);
    18     for (int i = 0; i < num_nodes; i++)
    19         graph[i] = new GraphNode(i);
    20     int node, neigh;
    21     for (int i = 0; i < num_edges; i++) {
    22         scanf("%d %d", &node, &neigh);
    23         graph[node] -> neighbors.push_back(graph[neigh]);
    24     }
    25     return graph;
    26 }
    27 
    28 void topological(vector<GraphNode*>& graph, GraphNode* node, 
    29                  unordered_set<GraphNode*>& visited, vector<GraphNode*>& nodes) {
    30     visited.insert(node);
    31     for (GraphNode* neigh : node -> neighbors)
    32         if (visited.find(neigh) == visited.end())
    33             topological(graph, neigh, visited, nodes);
    34     nodes.push_back(node);
    35 }
    36 
    37 vector<GraphNode*> topological_sort(vector<GraphNode*>& graph) {
    38     vector<GraphNode*> nodes;
    39     unordered_set<GraphNode*> visited;
    40     for (GraphNode* node : graph)
    41         if (visited.find(node) == visited.end())
    42             topological(graph, node, visited, nodes);
    43     reverse(nodes.begin(), nodes.end());
    44     return nodes;
    45 }
    46 
    47 void graph_test(void) {
    48     vector<GraphNode*> graph = read_digraph();
    49     // Topological Sort
    50     printf("Topological Sort:
    ");
    51     vector<GraphNode*> topo_sort = topological_sort(graph);
    52     for (GraphNode* node : topo_sort)
    53         printf("%d ", node -> label);
    54     printf("
    ");
    55 }
    56 
    57 int main(void) {
    58     graph_test();
    59     system("pause");
    60     return 0;
    61 }

    The above graph is input as as follows:

    9 9
    0 1
    1 4
    1 2
    2 7
    3 4
    0 4
    5 2
    5 6
    6 7

    The output is as follows:

    Topological Sort:
    8 5 6 3 0 1 2 7 4

    Now if you reorder the nodes of the graph in the order of the topological sort, all the edges will be pointing from left to right, as shown in the graph below.

  • 相关阅读:
    一看就懂的Mybatis框架入门笔记
    一文了解有趣的位运算(&、|、^、~、>>、<<)
    探究如何永久更改Maven的Dynamic Web Project版本及pom.xml默认配置
    编译流程之仿真
    数字逻辑基础2
    1. FPGA内部的逻辑资源
    c++ 入门之深入探讨拷贝函数和内存分配
    c++入门之浅拷贝和深拷贝
    c++入门之详细探讨类的一些行为
    c++入门之类与内存
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4604248.html
Copyright © 2011-2022 走看看