zoukankan      html  css  js  c++  java
  • [LeetCode] N-Queens II

    If you have solved the N-Queens problem, this one can be solved in a similar manner. Starting from the first row, we try each of its columns. If there is no attack, we move on to the next row based previous rows. Otherwise, we backtrack to the current row and try another selection of column position. Once we meet the last row, increase the counts by 1.

    The code is as follows.

     1 class Solution {
     2 public:
     3     int totalNQueens(int n) {
     4         int* colPos = new int [n];
     5         int counts = 0;
     6         solve(colPos, n, 0, counts);
     7         delete colPos;
     8         return counts;
     9     }
    10 private:
    11     bool noAttack(int*& colPos, int row, int col) {
    12         for (int r = row - 1, ld = col - 1, rd = col + 1; r >= 0; r--, ld--, rd++)
    13             if (colPos[r] == col || colPos[r] == ld || colPos[r] == rd)
    14                 return false;
    15         return true;
    16     }
    17     void solve(int*& colPos, int n, int row, int& counts) {
    18         if (row == n) {
    19             counts++;
    20             return;
    21         }
    22         for (int col = 0; col < n; col++) {
    23             colPos[row] = col;
    24             if (noAttack(colPos, row, col))
    25                 solve(colPos, n, row + 1, counts);
    26         }
    27     }
    28 };

    Someone has even suggested a damn clever solution to this problem using bit-manipulations in this link (refer to the first answer).

    I rewrite the code below for reference.

     1 class Solution {
     2 public:
     3     int totalNQueens(int n) {
     4         int counts = 0;
     5         int limit = (1 << n) - 1;
     6         solve(0, 0, 0, limit, counts);
     7         return counts;
     8     }
     9 private:
    10     void solve(int hProj, int lProj, int rProj, int limit, int& counts) {
    11         if (hProj == limit) {
    12             counts++;
    13             return;
    14         }
    15         int pos = limit & (~(hProj | lProj | rProj));
    16         while (pos) {
    17             int p = pos & (-pos);
    18             pos ^= p;
    19             solve(hProj | p, (lProj | p) << 1, (rProj | p) >> 1, limit, counts);
    20         }
    21     }
    22 };

    The above two are both recursive solutions. This problem can also be solved iteratively as in this link.

    I have also rewritten the code below for reference.

     1 class Solution {
     2 public:
     3     int totalNQueens(int n) {
     4         int* colPos = new int [n];
     5         memset(colPos, -1, n * sizeof(int));
     6         int row = 0, counts = 0;
     7         while (row >= 0) {
     8             if (row == n) {
     9                 counts++;
    10                 row--;
    11             }
    12             int col = (colPos[row] == -1) ? 0 : colPos[row] + 1;
    13             for (; col < n; col++) {
    14                 if (noAttack(colPos, row, col)) {
    15                     colPos[row] = col;
    16                     row++;
    17                     break;
    18                 }
    19             }
    20             if (col == n) {
    21                 colPos[row] = -1;
    22                 row--;
    23             }
    24         }
    25         return counts;
    26     }
    27 private:
    28     bool noAttack(int*& colPos, int row, int col) {
    29         for (int r = row - 1, ld = col - 1, rd = col + 1; r >= 0; r--, ld--, rd++)
    30             if (colPos[r] == col || colPos[r] == ld || colPos[r] == rd)
    31                 return false;
    32         return true;
    33     }
    34 };
  • 相关阅读:
    重载的概念和体现形式
    构造方法的概述和使用
    可变长参数
    成员方法的定义
    Point类的定义
    Person类的定义
    类和对象以及引用的定义
    高数学习----微积分
    高数学习----向量代数和空间解析几何
    一个无法解析的外部命令and无法解析的外部符号
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4614716.html
Copyright © 2011-2022 走看看