zoukankan      html  css  js  c++  java
  • [LeetCode] Find Minimum in Rotated Sorted Array II

    This problem is more or less the same as Find Minimum in Rotated Sorted Array. And one key difference is as stated in the solution tag. That is, due to duplicates, we may not be able to throw one half sometimes. And in this case, we could just apply linear search and the time complexity will become O(n).

    The idea to solve this problem is still to use invariants. We set l to be the left pointer and r to be the right pointer. Since duplicates exist, the invatiant is nums[l] >= nums[r] (if it does not hold, then nums[l] will simply be the minimum). We then begin binary search by comparingnums[l], nums[r] with nums[mid].

    1. If nums[l] = nums[r] = nums[mid], simply apply linear search within nums[l..r].
    2. If nums[mid] <= nums[r], then the mininum cannot appear right to mid, so set r = mid;
    3. If nums[mid] > nums[r], then mid is in the first larger half and r is in the second smaller half, so the minimum is to the right of mid: set l = mid + 1.

    The code is as follows.

     1 class Solution {
     2 public:
     3     int findMin(vector<int>& nums) {
     4         int l = 0, r = nums.size() - 1;
     5         while (nums[l] >= nums[r]) {
     6             int mid = (l & r) + ((l ^ r) >> 1);
     7             if (nums[l] == nums[r] && nums[mid] == nums[l])
     8                 return findMinLinear(nums, l, r);
     9             if (nums[mid] <= nums[r]) r = mid;
    10             else l = mid + 1;
    11         }
    12         return nums[l];
    13     } 
    14 private:
    15     int findMinLinear(vector<int>& nums, int l, int r) {
    16         int minnum = nums[l];
    17         for (int p = l + 1; p <= r; p++)
    18             minnum = min(minnum, nums[p]);
    19         return minnum;
    20     }
    21 };
  • 相关阅读:
    hdu1881(贪心+dp)
    hdu1513(最长公共子序列)
    关于布局的一点心得
    android字符串工具类
    android系统时间格式转换工具类
    android sp文件一个键值保存多条信息
    android 对话框显示工具类
    android网络连接工具类
    日志打印工具类
    关于项目中的一些经验:封装activity、service的基类,封装数据对象
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4659011.html
Copyright © 2011-2022 走看看