zoukankan      html  css  js  c++  java
  • [LeetCode] Find Minimum in Rotated Sorted Array II

    This problem is more or less the same as Find Minimum in Rotated Sorted Array. And one key difference is as stated in the solution tag. That is, due to duplicates, we may not be able to throw one half sometimes. And in this case, we could just apply linear search and the time complexity will become O(n).

    The idea to solve this problem is still to use invariants. We set l to be the left pointer and r to be the right pointer. Since duplicates exist, the invatiant is nums[l] >= nums[r] (if it does not hold, then nums[l] will simply be the minimum). We then begin binary search by comparingnums[l], nums[r] with nums[mid].

    1. If nums[l] = nums[r] = nums[mid], simply apply linear search within nums[l..r].
    2. If nums[mid] <= nums[r], then the mininum cannot appear right to mid, so set r = mid;
    3. If nums[mid] > nums[r], then mid is in the first larger half and r is in the second smaller half, so the minimum is to the right of mid: set l = mid + 1.

    The code is as follows.

     1 class Solution {
     2 public:
     3     int findMin(vector<int>& nums) {
     4         int l = 0, r = nums.size() - 1;
     5         while (nums[l] >= nums[r]) {
     6             int mid = (l & r) + ((l ^ r) >> 1);
     7             if (nums[l] == nums[r] && nums[mid] == nums[l])
     8                 return findMinLinear(nums, l, r);
     9             if (nums[mid] <= nums[r]) r = mid;
    10             else l = mid + 1;
    11         }
    12         return nums[l];
    13     } 
    14 private:
    15     int findMinLinear(vector<int>& nums, int l, int r) {
    16         int minnum = nums[l];
    17         for (int p = l + 1; p <= r; p++)
    18             minnum = min(minnum, nums[p]);
    19         return minnum;
    20     }
    21 };
  • 相关阅读:
    2-SAT模板
    AC自动机
    省选预备营-Day3(图论) 总结
    省选预备营-Day2(分治) 总结
    左偏树(可并堆)总结
    省选预备营-Day1(数据结构) 总结
    OI基础知识
    C++ 堆
    CH4601 普通平衡树
    java 函数形参传值和传引用的区别
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4659011.html
Copyright © 2011-2022 走看看