zoukankan      html  css  js  c++  java
  • [LeetCode] Find Minimum in Rotated Sorted Array II

    This problem is more or less the same as Find Minimum in Rotated Sorted Array. And one key difference is as stated in the solution tag. That is, due to duplicates, we may not be able to throw one half sometimes. And in this case, we could just apply linear search and the time complexity will become O(n).

    The idea to solve this problem is still to use invariants. We set l to be the left pointer and r to be the right pointer. Since duplicates exist, the invatiant is nums[l] >= nums[r] (if it does not hold, then nums[l] will simply be the minimum). We then begin binary search by comparingnums[l], nums[r] with nums[mid].

    1. If nums[l] = nums[r] = nums[mid], simply apply linear search within nums[l..r].
    2. If nums[mid] <= nums[r], then the mininum cannot appear right to mid, so set r = mid;
    3. If nums[mid] > nums[r], then mid is in the first larger half and r is in the second smaller half, so the minimum is to the right of mid: set l = mid + 1.

    The code is as follows.

     1 class Solution {
     2 public:
     3     int findMin(vector<int>& nums) {
     4         int l = 0, r = nums.size() - 1;
     5         while (nums[l] >= nums[r]) {
     6             int mid = (l & r) + ((l ^ r) >> 1);
     7             if (nums[l] == nums[r] && nums[mid] == nums[l])
     8                 return findMinLinear(nums, l, r);
     9             if (nums[mid] <= nums[r]) r = mid;
    10             else l = mid + 1;
    11         }
    12         return nums[l];
    13     } 
    14 private:
    15     int findMinLinear(vector<int>& nums, int l, int r) {
    16         int minnum = nums[l];
    17         for (int p = l + 1; p <= r; p++)
    18             minnum = min(minnum, nums[p]);
    19         return minnum;
    20     }
    21 };
  • 相关阅读:
    traceroute工作原理
    Android 关于资源适配
    JavaScript对象
    八大排序算法总结
    Linux pipe函数
    cocos2d-x读取xml(适用于cocos2d-x 2.0以上版本号)
    WebService 设计总结
    select poll使用
    QQ强制视频聊天
    图解iPhone开发新手教程
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4659011.html
Copyright © 2011-2022 走看看