zoukankan      html  css  js  c++  java
  • [LeetCode] Maximum Gap

    This problem has a naive solution using sort and linear scan. The suggested solution uses the idea of bucket sort. The following is a C++ implementation of the suggested solution.

    Suppose all the n elements in nums fall within [l, u], the maximum gap will not be smaller than gap = (u - l) / (n - 1). However, this gap may become 0 and so we take the maximum of it with 1 to guarantee that the gap used to create the buckets is meaningful.

    Then there will be at most m = (u - l) / gap + 1 buckets. For each number num, it will fall in the k = (num - u) / gap bucket. After putting all elements of nums in the corresponding buckets, we can just scan the buckets to compute the maximum gap.

    The maximum gap is only dependent on the maximum number of the current bucket and the minimum number of the next neighboring bucket (the bucket should not be empty). So we only store the minimum and the maximum of each bucket. Each bucket is initialized as {minimum = INT_MAX, maximum = INT_MIN} and then updated while updating the buckets.

    Putting these together, we can have the following solution, barely a straight-forward implementation of the suggested solution.

     1 class Solution {
     2 public:
     3     int maximumGap(vector<int>& nums) {
     4         int n = nums.size();
     5         if (n < 2) return 0;
     6         auto lu = minmax_element(nums.begin(), nums.end());
     7         int l = *lu.first, u = *lu.second;
     8         int gap = max((u - l) / (n - 1), 1);
     9         int m = (u - l) / gap + 1;
    10         vector<vector<int>> buckets(m, {INT_MAX, INT_MIN});
    11         for (int num : nums) {
    12             int k = (num - l) / gap;
    13             if (num < buckets[k][0]) buckets[k][0] = num;
    14             if (num > buckets[k][1]) buckets[k][1] = num;
    15         }
    16         int i = 0, j;
    17         gap = buckets[0][1] - buckets[0][0];
    18         while (i < m) {
    19             j = i + 1;
    20             while (j < m && buckets[j][0] == INT_MAX && buckets[j][1] == INT_MIN)
    21                 j++;
    22             if (j == m) break;
    23             gap = max(gap, buckets[j][0] - buckets[i][1]);
    24             i = j;
    25         }
    26         return gap; 
    27     }
    28 };
  • 相关阅读:
    华为笔试
    进程间通信——管道通信
    进程间通信——使用WM_COPYDATA消息通信
    混合高斯背景建模
    基于mean shift的目标跟踪算法
    Lukas-Kanade光流法
    【CUDA并行编程之八】Cuda实现Kmeans算法
    【CUDA并行编程之七】数组元素之和
    【CUDA并行编程之六】KNN算法的并行实现
    【CUDA并行编程之五】计算向量的欧式距离
  • 原文地址:https://www.cnblogs.com/jcliBlogger/p/4717404.html
Copyright © 2011-2022 走看看