插值,不论在数学中的数值分析中,还是在我们实际生产生活中,都不难发现它的身影,比如造船业和飞机制造业中的三次样条曲线。那么,什么是插值呢?我们可以先看一下插值的定义,如下:
(定义)如果对于每个(1 leq i leq n,P(x_{i})=y_{i}),则称函数(y=P(x))插值数据点((x_{1},y_{1}),...,(x_{n},y_{n})).
插值的定义无疑是清楚明了的,而在众多的数学函数中,多项式无疑是最简单,最常见的函数,关于它的理论研究也最为透彻。因此,我们可以不妨先考虑利用多项式来进行插值。那么,这样的多项式是否总是存在呢?答案是肯定的,因为我们有如下定理:
(多项式插值定理)令((x_{1},y_{1}),...,(x_{n},y_{n}))是平面中的(n)个点,各(x_{i})互不相同。则有且仅有一个(n-1)次或者更低的多项式(P)满足(P(x_{i})=y_{i},i=1,2,...,n.)
证明:先用归纳法证明存在性,再证明唯一性。
当(n=1)时,常函数(0次)(P_{1}(x)=y_{1})即符合要求。假设当(n-1)时存在一个次数(leq n-2)的多项式(P_{n-1}),使得(P_{n-1}(x_{i})=y_{i},i=1,2,...,n-1.)则令(P_{n}(x)=P_{n-1}(x)+c(x-x_{1})(x-x_{2})...(x-x_{n-1})(x-x_{n})),其中(c)为待定系数,利用(P_{n}(x_{n})=y_{n})即可求出待定系数(c).此时,(P_{n}(x_{i})=y_{i},i=1,2,...,n,)且(P_{n}(x))的次数(leq n-1).这样就证明了存在性。
其次证明唯一性。假设存在两个这样的多项式,设为(P(x))和(Q(x)),它们次数(leq n-1)且都插值经过(n)个点,即(P(x_{i})=Q(x_{i})=y_{i},i=1,2,...,n.)令(H(x)=P(x)-Q(x)),(H)的次数也(leq n-1),且有(n)个不同的根(x_{1},x_{2},...,x_{n}).因此,由多项式基本定理可知,(H(x))为0多项式,即恒等于0,故有(P(x)=Q(x)).这样就证明了存在性。
证毕。
有了以上定理,我们可以放心地使用多项式进行插值,同时,通过上述定理,我们可以用归纳法来构造此多项式,但是,这样的方法难免复杂麻烦。于是,天才的法国数学家拉格朗日(Lagrange)创造性地发明了一种实用的插值多项式方法来解决这个问题,那么,他的方法是怎么样的?
一般来说,如果我们有(n)个点((x_{1},y_{1}),...,(x_{n},y_{n})),各(x_{i})互不相同。对于1到n之间的每个(k),定义(n-1)次多项式
(L_{k}(x))具有有趣的性质:(L_{k}(x_{k})=1,L_{k}(x_{j})=0,j eq k.)然后定义一个(n-1)次多项式
这样的多项式(P_{n-1}(x))满足(P_{n-1}(x_{i})=y_{i},i=1,2,...,n.)这就是著名的拉格朗日插值多项式!
以上就是拉格朗日插值多项式的理论介绍部分,接下来我们就要用Python中的Sympy模块来实现拉格朗日插值多项式啦~~
实现拉格朗日插值多项式的Python代码如下:
from sympy import *
def Lagrange_interpolation(keys, values):
x = symbols('x')
t = len(keys)
ploy = []
for i in range(t):
lst = ['((x-'+str(_)+')/('+str(keys[i])+'-'+str(_)+'))' for _ in keys if _ != keys[i]]
item = '*'.join(lst)
ploy.append(str(values[i])+'*'+item)
ploy = '+'.join(ploy)
return factor(expand(ploy))
def main():
#example 1, interpolate a line
x_1 = [1,2]
y_1 = [3,5]
if len(x_1) != len(y_1):
print('The lengths of two list are not equal!')
else:
print('Lagrange_interpolation polynomials is:')
print(Lagrange_interpolation(x_1,y_1))
#example 2, interpolate a parabola
x_2 = [0,2,3]
y_2 = [1,2,4]
if len(x_2) != len(y_2):
print('The lengths of two list are not equal!')
else:
print('Lagrange_interpolation polynomials is:')
print(Lagrange_interpolation(x_2,y_2))
#example 3
x_3 = [0,1,2,3]
y_3 = [2,1,0,-1]
if len(x_3) != len(y_3):
print('The lengths of two list are not equal!')
else:
print('Lagrange_interpolation polynomials is:')
print(Lagrange_interpolation(x_3,y_3))
main()
函数Lagrange_interpolation()具体实现了拉格朗日插值多项式,参数(keys, values)为list形式的点对,在main()函数中举了三个Lagrange_interpolation()函数的应用实例,一个是插值两个点,即直线,一个是插值三个点,即抛物线,一个是插值四个点,但结果却是一次多项式。该程序的运行结果如下:
def Lagrange_interpolation(keys, values):
x = symbols('x')
t = len(keys)
ploy = []
for i in range(t):
lst = ['((x-'+str()+')/('+str(keys[i])+'-'+str()+'))' for _ in keys if _ != keys[i]]
item = ''.join(lst)
ploy.append(str(values[i])+''+item)
ploy = '+'.join(ploy)
return factor(expand(ploy))
def degree_of_sum(k):
x_list, y_list = [], []
degree = k # degree=k in expression of 1^k+2^k+...+x^{k}
cul_sum = 0
for i in range(1,degree+3):
x_list.append(i)
cul_sum += i**degree
y_list.append(cul_sum)
return Lagrange_interpolation(x_list,y_list)
def main():
r = redis.Redis(host='localhost', port=6379,db=0)
for k in range(1,51):
expression = str(degree_of_sum(k))
r.hset('sum_%s'%k,'degree',str(k))
r.hset('sum_%s'%k,'expression',expression)
print('Degree of %d inserted!'%k)
main()
运行以上程序,结果如下:
<center>
![程序运行结果](http://img.blog.csdn.net/20180108221925388?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvamNsaWFuOTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
</center>
在Redis中的储存结果如下:
<center>
![Redis中储存结果](http://img.blog.csdn.net/20180108221948384?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvamNsaWFuOTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
</center>
我们可以具体查看当$k=2$时的求和公式,如下:
<center>
![k=2时的求和公式](http://img.blog.csdn.net/20180108222038385?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvamNsaWFuOTE=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)
</center>
  这样我们就介绍完了一个拉格朗日插值多项式的应用了。看了上面的介绍,聪明又机智的你是否能想到更多拉格朗日插值多项式的应用呢?欢迎大家交流哦~~
  新的一年,新的气象,就从这一篇开始~~