zoukankan      html  css  js  c++  java
  • [leetcode] Permutation Sequence

    The set[1,2,3,…,n]contains a total of n! unique permutations.

    By listing and labeling all of the permutations in order,
    We get the following sequence (ie, for n = 3):

    1. "123"
    2. "132"
    3. "213"
    4. "231"
    5. "312"
    6. "321"

    Given n and k, return the kth permutation sequence.

    https://oj.leetcode.com/problems/permutation-sequence/

    计算1~n数字的第k个排列

    思路1:从小到大生成同时计数,直到第k个。 肯定超时试都不用试。。

    思路2:直接根据规律计算第k个排列。

        分析:1~n个数共有n!个排列,1开头的有(n-1)!个,2开头的(n-1)!个,...n开头的有(n-1)!个。因此用k/(n-1)!就确定了第一位数字,然后依次类推(用过的数字要去除),继续在(n-1)!个数中找第k%(n-1)!个数。

    思路2代码:

    public class Solution {
        public String getPermutation(int n, int k) {
            int[] num = new int[n];
            int permSum = 1;
            for (int i = 0; i < n; i++) {
                num[i] = i + 1;
                permSum *= (i + 1);
            }
            StringBuilder sb = new StringBuilder();
            k--;//change to base 0
            for (int i = 0; i < n; i++) {
                permSum = permSum / (n - i);
                int selected = k / permSum;
                sb.append(num[selected]);
                for (int j = selected; j < n - i - 1; j++)
                    num[j] = num[j + 1];
                k = k % permSum;
            }
            return sb.toString();
        }
    
        public static void main(String[] args) {
            System.out.println(new Solution().getPermutation(4, 10));
        }
    
    }

    第二遍记录:

    注意k每次的变化 k %=permProd;

    注意每次选完一个元素后,数组后面的元素向前移动。移动之后被选择的数字被覆盖,数组最后一个元素舍弃。比如原来是[1,2,3,4,5],3被选走了,数组变为[1,2,4,5,5],最后一个5其实相当于被舍弃,之后只能从[1,2,4,5]中选下一次填充的数字。

    public class Solution {
        public String getPermutation(int n, int k) {
            int[] num = new int[n];
            int permProd = 1;
    
            for (int i = 0; i < n; i++) {
                num[i] = i + 1;
                permProd *= num[i];
            }
            StringBuilder sb = new StringBuilder();
            k--;
            int idx = 0;
            for (int i = 0; i < n; i++) {
                permProd /= n - i;
                idx = k / permProd;
                sb.append(num[idx]);
                // move the array after the index idx
                for (int j = idx; j < n - i - 1; j++) {
                    num[j] = num[j + 1];
                }
                k %= permProd;
            }
            return sb.toString();
        }
    
        public static void main(String[] args) {
            System.out.println(new Solution().getPermutation(3, 6));
        }
    }

    参考:

    http://blog.csdn.net/havenoidea/article/details/12837441

    http://www.cnblogs.com/TenosDoIt/p/3721918.html

  • 相关阅读:
    htm与html的区别
    CLR笔记:3.共享程序集合强命名程序集
    CLR笔记:5.基元,引用和值类型
    CLR笔记:13.数组
    CLR笔记:18.可空值类型
    正则表达式
    代码大全
    wcf的部署
    Json相关
    $.ready和onload
  • 原文地址:https://www.cnblogs.com/jdflyfly/p/3810776.html
Copyright © 2011-2022 走看看